Skip to main content
Log in

Characterization of Aged Lettuce and Chard Seeds by Photothermal Techniques

  • ICPPP 19
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, photoacoustic spectroscopy (PAS) was used as an option to evaluate aging in vegetable seeds. Aged seeds were characterized by their decrease in germination and vigor, which are important quality measures to obtain healthy and uniform crops. The seed optical parameters obtained with this technique provide information about their composition and physiological quality attributes. Red lettuce and chard seeds, aged and non-aged, were used for these experiments. The thermal diffusivity (α) and optical absorption coefficient (β) were determined for a large number of aged and non-aged seeds. In the case of β, this optical parameter was obtained in the spectral range from 250 nm to 750 nm. The results show statistically significant differences in β values for both types of seeds, with higher values found for non-aged specimens. Also images of scanning electron microscopy for aged and non-aged seeds corroborate marked differences between them. This PAS approach represents a promising method to be applied in the evaluation of seed quality in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Spano, R. Buselli, M.R. Castiglione, S. Bottega, I. Grilli, J. Plant Physiol. 164, 487 (2007)

    Article  Google Scholar 

  2. D. Hu, G. Ma, Q. Wang, J. Yao, Y. Wang, H.W. Pritchard, X.F. Wang, Plant, Cell Environ. 35, 2045 (2012)

    Article  Google Scholar 

  3. K.J. Rice, A.R. Deyer, Plant Ecol. 155, 237 (2001)

    Article  Google Scholar 

  4. S. Kibinza, J. Bazin, C. Bailly, M.J. Farrant, F. Corbineaua, B.H. El-Maarouf, Plant Sci. 181, 309 (2011)

    Article  Google Scholar 

  5. H.J. Hussein, A.I. Shaheed, O.M. Yasser, Euphrates J. Agric. Sci. 3, 1 (2011)

    Google Scholar 

  6. Tubic S. Balesevic, M. Tatic, V. Dordevic, Z. Nikolic, V. Dukic, Helia 33, 153 (2010)

    Article  Google Scholar 

  7. E.J. Moncaleano, C.F.B. Silva, R.S.S. Silva, A.A.J. Granja, J.L.M.C. Alves, F.M. Pompelli, Ind. Crops Prod. 44, 684 (2013)

    Article  Google Scholar 

  8. M.V.H. Vaz, C.S. Moure, N.D. Dourado, P.T. Lourenço, D.M.A. Neves, J. Seed Sci. 35, 64 (2013)

    Article  Google Scholar 

  9. S.K. Yadav, H. Jalink, S.P.C. Groot, R. Van Der Schoor, S. Yadav, M. Dadlani, J. Kodde, Sci. Hortic. 189, 81 (2015)

    Article  Google Scholar 

  10. A.C. Hernández, P.A. Domínguez, O.A. Cruz, B.R. Zepeda, Int. J. Thermophys. 36, 891 (2015)

    Article  ADS  Google Scholar 

  11. Q.A. Garcia, H. Vargas, S.A. Tomás, A.D. Acosta, O.A. Cruz, A. Albores, J.P. Valcarcel, Instrum Sci. Technol. 26, 227 (1998)

    Article  Google Scholar 

  12. H.R.A. Muñoz, A. Calderón, O.A. Cruz, S.A. Tomás, S.F. Sánchez, R.G. Peña, High Temp. High Press. 32, 379 (2000)

    Article  Google Scholar 

  13. P.C. Ponce, S.A. Tomás, O.A. Cruz, B.G. López, Martín E. San, S.F. Sánchez, Anal. Sci. 17, 538 (2002)

    Google Scholar 

  14. A.C. Hernandez, M. Mezzalama, N. Lozano, O.A. Cruz, E. Martinez, R. Ivanov, P.A. Domínguez, Eur. Phys. J. Spec. Top. 153, 519 (2008)

    Article  Google Scholar 

  15. H.N. Espinoza, I.R. Pedroza, M.E. San Martín, O.A. Cruz, S.A. Tomás, Food Biophys. 6, 106 (2011)

    Article  Google Scholar 

  16. M.R. Rico, A.C. Hernández, P.A. Domínguez, O.A. Cruz, B.J.L. López, Int. J. Thermophys. 35, 1933 (2014)

    Article  ADS  Google Scholar 

  17. O.A. Cruz, S.A. Tomás, in Photothermal Methods Applied to the Study of Edible Films Used to Extend the Shelf Life of Foodstuffs in Thermal Wave Physics and Related Photothermal Techniques: Basic Principles and Recent Developments, ed. by E. Marin (Transworld Research Network, Kerala, 2009)

    Google Scholar 

  18. J. Santos, L. Silveira, L. Olenka, A. Oliveira, A. Rodriguez, V. Garg, A. Bento, R. Oliveira, P. Morais, Eur. Phys. J. Spec. Top. 153, 523 (2008)

    Article  Google Scholar 

  19. D. Bicanic, D. Dimitrovski, S. Luterotti, K. Marković, C. Twisk, J. Buijnsters, O. Dóka, Food Biophys. 5, 24 (2009)

    Article  Google Scholar 

  20. A.C. Hernandez, O.A. Cruz, R. Ivanov, P.A. Domínguez, A. Aquiles, I. Moreno, M.R. Rico, Food Biophys. 6, 481 (2011)

    Article  Google Scholar 

  21. M.J.L. Fernández, A.O. Zelaya, O.A. Cruz, S.F. Sánchez, Anal. Sci. 17, 338 (2001)

    Google Scholar 

  22. P. Rodríguez, G. González, J. Food Eng. 58, 205 (2003)

    Article  Google Scholar 

  23. L.F. Perondi, L.C.M. Miranda, J. Appl. Phys. 62, 2955 (1987)

    Article  ADS  Google Scholar 

  24. M. Yáñez, M.E. Rodríguez, J.J. Alvarado, A.O. Zelaya, S.F. Sánchez, O.A. Cruz, H. Vargas, J.D.C. Figueroa, B.F. Martínez, J.L. Martínez, H.J. González, C. Arguello, L.C.M. Miranda, Analyst 120, 1953 (1995)

    Article  ADS  Google Scholar 

  25. P. Poulet, J. Chambron, Appl. Phys. 53, 1738 (1979)

    Google Scholar 

  26. V.T. Karathanos, G.D. Saravacos, J. Food Eng. 18, 259 (1993)

    Article  Google Scholar 

  27. A.E. Kostaropoulos, G.D. Saravacos, Food Eng. 33, 101 (1997)

    Article  Google Scholar 

  28. J. Yang, Y. Zhao, J. Food Process Eng 24, 291 (2001)

    Article  Google Scholar 

  29. W. Yang, S. Sokhansanj, J. Tang, P. Winter, Biosyst. Eng. 82, 169 (2002)

    Article  Google Scholar 

  30. T. Schmid, Anal. Bioanal. Chem. 384, 1071 (2006)

    Article  Google Scholar 

  31. M.V. Marquezini, N. Cella, A.M. Mansanares, H. Vargas, L.C.M. Miranda, Meas. Sci. Technol. 2, 396 (1991)

    Article  ADS  Google Scholar 

  32. O. Dóka, G. Ficzek, D. Bicanic, R. Spruijt, S. Luterotti, M. Tóth, G. Végvári, Talanta 84, 341 (2011)

    Article  Google Scholar 

  33. P.A. Domínguez, A.C. Hernández, O. Cruz, Int. J. Thermophys. 38, 111 (2017)

    Article  ADS  Google Scholar 

  34. E. Clerkx, Vries H. Blankestijin-De, G. Ruys, P. Groot, M. Koorneef, Plant Physiol. 132, 1077 (2003)

    Article  Google Scholar 

  35. N. Shetty, T.G. Min, R. Gislum, M.H. Olesen, B. Boelt, J. Near Infrared Spectrosc. 19, 451 (2011)

    Article  ADS  Google Scholar 

  36. C.K. Ahn, B.K. Cho, J.S. Kang, K.J. Lee, J. Agric. Sci. 39, 111 (2012)

    Google Scholar 

  37. A. Artola, G. Carrillo, Castañeda, G. Garcia de los Santos. Seed Sci. Technol. 31, 455 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank CONACYT, CINVESTAV, Instituto Politécnico Nacional, through COFAA, EDI projects and SIP scholarships. One of the authors (A. C. Orea) thanks CONACYT for partial financial support through Project 241330. The technical assistance of Esther Ayala, Ana Bertha Soto, and Marcela Guerrero from the Physics Department, CINVESTAV-IPN, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Paniagua Pardo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardo, G.P., Pacheco, A.D., Tomás, S.A. et al. Characterization of Aged Lettuce and Chard Seeds by Photothermal Techniques. Int J Thermophys 39, 118 (2018). https://doi.org/10.1007/s10765-018-2438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2438-4

Keywords

Navigation