Skip to main content
Log in

Optimal Control of Time Dependence of Temperature in Thermoelectric Devices for Medical Purposes

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The physical model of the thermoelement in the unsteady cooling mode is considered. The heat capacity of the cooling object and the connecting and insulating plates, the heat load, the heat exchange with the ambient, the release of the Joule heat due to the presence of contact resistance between the thermoelectric material and the metallic connecting plate, as well as the Thomson effect impact in the bulk of thermoelement legs are taken into account. A method is described for calculating the optimal dependence of the thermoelement supply current on time, which provides the preset time dependence of the cooling temperature. Examples of computer simulation of current control functions for implementation of the specified time functions of operating temperature in medical devices are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.S. Stil’bans, N.A. Fedorovich, Tech. Phys. 3, 460 (1958)

    Google Scholar 

  2. J.E. Parrott, Solid State Electron. 1, 135 (1960). https://doi.org/10.1016/0038-1101(60)90045-9

    Article  ADS  Google Scholar 

  3. V.P. Babin, E.K. Iordanishvilli, Tech. Phys. 14, 293 (1969)

    Google Scholar 

  4. K. Landecker, Solid State Electron. 3, 239 (1961). https://doi.org/10.1016/0038-1101(61)90007-7

    Article  ADS  Google Scholar 

  5. G.J. Snyder, J.-P. Fleurial, T. Caillat, R.G. Yang, G.J. Chen, J. Appl. Phys. 92, 1564 (2002). https://doi.org/10.1063/1.1489713

    Article  ADS  Google Scholar 

  6. T. Thonhauser, G.D. Mahan, L. Zikatanov, J. Roe, Appl. Phys. Lett. 85, 3247 (2004). https://doi.org/10.1063/1.1806276

    Article  ADS  Google Scholar 

  7. R.G. Yang, G.J. Chen, A.R. Kumar, G.J. Snyder, J.-P. Fleurial, Energy Convers. Manag. 46, 1407 (2005). https://doi.org/10.1016/j.enconman.2004.07.004

    Article  Google Scholar 

  8. L.M. Shen, H.X. Chen, F. Xiao, Y.X. Yang, S.W. Wang, Energy Convers. Manag. 80, 39 (2014). https://doi.org/10.1016/j.enconman.2014.01.003

    Article  Google Scholar 

  9. L.M. Shen, F. Xiao, H.X. Chen, S.W. Wang, Int. J. Refrig. 35, 1156 (2012). https://doi.org/10.1016/j.ijrefrig.2012.02.004

    Article  Google Scholar 

  10. M. Ma, J. Yu, Int. J. Heat Mass Transf. 72, 234 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.017

    Article  Google Scholar 

  11. J.N. Mao, H.X. Chen, H. Jia, X.L. Qian, J. Appl. Phys. 112, 014514-1 (2012). https://doi.org/10.1063/1.4735469

    Article  ADS  Google Scholar 

  12. Chin-Hsiang Cheng, Shu-Yu. Huang, Tsung-Chieh Cheng, Int. J. Heat Mass Transf. 53, 2001–2011 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.056

    Article  Google Scholar 

  13. A.A. Snarskii, I.V. Bezsudnov, Energy Convers. Manag. 94, 103 (2015). https://doi.org/10.1016/j.enconman.2015.01.058

    Article  Google Scholar 

  14. L.V. Hao, X.-D. Wang, T.-H. Wang, J.-H. Meng, Energy (Oxf.) 83, 788 (2015). https://doi.org/10.1016/j.energy.2015.02.092

    Article  Google Scholar 

  15. M. Kotsur, Adv. Electr. Comput. Eng. 15, 117 (2015). https://doi.org/10.4316/aece.2015.02015

    Article  Google Scholar 

  16. M.P. Kotsur, Technology Audit and Production Reserves 1, N2(27) (2016). https://doi.org/10.15567/2312-8372.2016.59320. [in Ukrainian]

  17. E.K. Iordanishvili, B.E. Malkovich, Voprosy radioelektroniki, SeriyaTRTO, 2, 74 (1971) [in Russian]

  18. M.A. Kazanov, A.S. Rivkin, J. Eng. Phys. 24, 641 (1973). https://doi.org/10.1007/BF00838629

    Article  Google Scholar 

  19. A.S. Rivkin, Tech. Phys. 43, 1563 (1973)

    Google Scholar 

  20. A.A. Vayner, Thermoelectric Coolers (Radio i svyaz, Moscow, 1983). [in Russian]

    Google Scholar 

  21. A.I. Burshtein, Physical Basis of Calculation of Semiconductor Thermoelectric Devices (State Publishing House of Physical and Mathematical Literature, Moscow, 1962). [in Russian]

    Google Scholar 

  22. H.S. Carslow, J.C. Jaeger, Conduction of Heat in Solids (Oxford University Press, Oxford, 1959)

    Google Scholar 

  23. X. Kecheng, N.N. Korpan, L. Niu, Modern Cryosurgery for Cancer (World Scientific Publishing, London, 2012)

    Google Scholar 

  24. N.A. Samya, A. Sadekb, Egypt. J. Dermatol. Venereol. 34, 98 (2014)

    Article  Google Scholar 

  25. H. Bause, Monatsschrift Kinderheilkunde 152, 16 (2004). https://doi.org/10.1007/s00112-003-0867-y

    Article  Google Scholar 

  26. L.I. Anatychuk, L.M. Vikhor, R.R. Kobylianskyi, T.Y. Kadeniuk, J. Thermoelectr. 2, 46 (2017)

    Google Scholar 

  27. L.I. Anatychuk, O.I. Denisenko, R.R. Kobylianskyi, T.Y. Kadeniuk, Patent UA 107922 (2016)

  28. L.I. Anatychuk, O.I. Denisenko, R.R. Kobylianskyi, T.Y. Kadeniuk, Patent UA 108563 (2016)

  29. L.I. Anatychuk, O.I. Denisenko, R.R. Kobylianskyi, T.Y. Kadeniuk, Patent UA 108581 (2016)

  30. L.I. Anatychuk, O.I. Denisenko, R.R. Kobylianskyi, T.Y. Kadeniuk, Patent UA 108582 (2016)

  31. V. Leonov, R. Vullers, J. Renew. Sustain. Energy 1, 062701 (2009). https://doi.org/10.1063/1.3255465

    Article  Google Scholar 

  32. I.A. Moskalyk, O.M. Manyk, J. Thermoelectr. 6, 84 (2017)

    Google Scholar 

  33. W. Yiu, M.T. Basco, J.E. Aruny, B.E. Sumpio, Int. J. Angiol. 16, 1 (2007)

    Article  Google Scholar 

  34. VYu. Shakhov, V.I. Kochenov, Vopr. Onkol. 9, 31 (1983). [in Russian]

    Google Scholar 

  35. L.I. Anatychuk, L.M. Vikhor, R.R. Kobylianskyi, T.Y. Kadeniuk, Phys. Chem. Solid State 18, 455 (2017). https://doi.org/10.15330/pcss.18.4.455-459. [in Ukrainian]

    Article  Google Scholar 

  36. L.I. Anatychuk, L.Y. Kushnerik, O.I. Serediuk, Patent UA 8405 (2005)

  37. L.Y. Kushnerik, V.N. Tsukanov, J. Thermoelectr. 6, 67 (2001)

    Google Scholar 

  38. L.I. Anatychuk, G.I. Boboshko, R.R. Kobylianskyi, J. Thermoelectr. 4, 89 (2007)

    Google Scholar 

  39. L.I. Anatychuk, L.M. Vikhor, R.R. Kobylianskyi, T.Y. Kadeniuk, O.V. Zvarych, J. Thermoelectr. 3, 65 (2017)

    Google Scholar 

  40. E.L. Macheret, I.Z. Samosyuk, Guide to Reflexology (Vishcha shkola, Kiyev, 1982). [in Russian]

    Google Scholar 

Download references

Funding

Funding was provided by National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Vikhor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anatychuk, L., Vikhor, L., Kotsur, M. et al. Optimal Control of Time Dependence of Temperature in Thermoelectric Devices for Medical Purposes. Int J Thermophys 39, 108 (2018). https://doi.org/10.1007/s10765-018-2430-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2430-z

Keywords

Navigation