Behavior of a PCM at Varying Heating Rates: Experimental and Theoretical Study with an Aim at Temperature Moderation in Radionuclide Concrete Encasements


Phase-change materials (PCMs) can store/release thermal energy within a small temperature range. This is of interest in various industrial applications, for example, in civil engineering (heating/cooling of buildings) or cold storage applications. Another application may be the moderation of temperature increases in concrete encasements of radionuclides during their decay. The phase-change behavior of a material is determined by its heat capacity and the peak it exhibits near a phase change. We analyze the behavior of such peaks for a selected PCM at heating rates varying between \(0.1\,^{\circ }\hbox {C}\cdot \hbox {min}^{-1}\) and \(1\,^{\circ }\hbox {C}\cdot \hbox {min}^{-1}\), corresponding in real situations to different decay rates of radionuclides. We show that experimentally measured peaks can be plausibly described by an equilibrium theory that enables us to calculate the latent heat and phase-change temperature from experimental data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    E. Oró, A. de Gracia, A. Castell, M.M. Farid, L.F. Cabeza, Appl. Energy 99, 513–533 (2012)

    Article  Google Scholar 

  2. 2.

    M. Kenisarin, K. Mahkamov, Renew. Sust. Energy Rev. 11, 1913–1965 (2007)

    Article  Google Scholar 

  3. 3.

    L.F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, A.I. Fernández, Renew. Sust. Energy Rev. 15, 1675–1695 (2011)

    Article  Google Scholar 

  4. 4.

    F. Kuznik, D. David, K. Johannes, J.-J. Roux, Renew. Sust. Energy Rev. 15, 379–391 (2011)

    Article  Google Scholar 

  5. 5.

    N. Soares, J.J. Costa, A.R. Gaspar, P. Santos, Energy Build. 59, 82–103 (2013)

    Article  Google Scholar 

  6. 6.

    B. Pomaro, Model. Simul. Eng. 2016, 4165746 (2016)

    Google Scholar 

  7. 7.

    I. Medved’, A. Trník, L. Vozár, Int. J. Heat Mass Transf. 107, 123–132 (2017)

    Article  Google Scholar 

  8. 8.

    E. Günther, S. Hiebler, H. Mehling, R. Redlich, Int. J. Thermophys. 30, 1257–1269 (2009)

    ADS  Article  Google Scholar 

  9. 9.

    C. Schick, Anal. Bioanal. Chem. 395, 1589–1611 (2009)

    Article  Google Scholar 

  10. 10.

    C.S.P. Tripathi, P. Losada-Pérez, C. Glorieux, A. Kohlmeier, M.-G. Tamba, G.H. Mehl, J. Leys, Phys. Rev. E 84, 041707 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    O. Zmeškal, P. Štefková, L. Dohnalová, R. Bařinka, Int. J. Thermophys. 34, 926–938 (2013)

    ADS  Article  Google Scholar 

  12. 12.

    A. Eddhahak-Ouni, S. Drissi, J. Colin, J. Neji, S. Care, Appl. Therm. Eng. 64, 32–29 (2014)

    Article  Google Scholar 

  13. 13.

    J. Giro-Paloma, C. Barreneche, M. Martínez, B. Šumiga, L.F. Cabeza, A.I. Fernández, Energy 87, 223–227 (2015)

    Article  Google Scholar 

  14. 14.

    Standard DIN 51007:1994-06, General principles of differential thermal analysis (Beuth, Germany, 1994)

  15. 15.

    E. Gmelin, S.M. Sarge, Thermochim. Acta 347, 9–13 (2000)

    Article  Google Scholar 

  16. 16.

    Standard ISO 11357-1:2016, Plastics – differential scanning calorimetry (DSC)—part 1: General principles (ISO Committee, Geneve, 2016)

  17. 17.

    D. Lencer, M. Salinga, M. Wuttig, Adv. Mater. 23, 2030–2058 (2011)

    Article  Google Scholar 

Download references


This research was supported by the Czech Science Foundation, Project No. 17-11635S.

Author information



Corresponding author

Correspondence to Igor Medved’.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Medved’, I., Trník, A. Behavior of a PCM at Varying Heating Rates: Experimental and Theoretical Study with an Aim at Temperature Moderation in Radionuclide Concrete Encasements. Int J Thermophys 39, 83 (2018).

Download citation


  • Heat capacity
  • Latent heat
  • Phase-change material
  • Radionuclide encasement