Advertisement

Behavior of a PCM at Varying Heating Rates: Experimental and Theoretical Study with an Aim at Temperature Moderation in Radionuclide Concrete Encasements

Article
  • 24 Downloads

Abstract

Phase-change materials (PCMs) can store/release thermal energy within a small temperature range. This is of interest in various industrial applications, for example, in civil engineering (heating/cooling of buildings) or cold storage applications. Another application may be the moderation of temperature increases in concrete encasements of radionuclides during their decay. The phase-change behavior of a material is determined by its heat capacity and the peak it exhibits near a phase change. We analyze the behavior of such peaks for a selected PCM at heating rates varying between \(0.1\,^{\circ }\hbox {C}\cdot \hbox {min}^{-1}\) and \(1\,^{\circ }\hbox {C}\cdot \hbox {min}^{-1}\), corresponding in real situations to different decay rates of radionuclides. We show that experimentally measured peaks can be plausibly described by an equilibrium theory that enables us to calculate the latent heat and phase-change temperature from experimental data.

Keywords

Heat capacity Latent heat Phase-change material Radionuclide encasement 

Notes

Acknowledgements

This research was supported by the Czech Science Foundation, Project No. 17-11635S.

References

  1. 1.
    E. Oró, A. de Gracia, A. Castell, M.M. Farid, L.F. Cabeza, Appl. Energy 99, 513–533 (2012)CrossRefGoogle Scholar
  2. 2.
    M. Kenisarin, K. Mahkamov, Renew. Sust. Energy Rev. 11, 1913–1965 (2007)CrossRefGoogle Scholar
  3. 3.
    L.F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, A.I. Fernández, Renew. Sust. Energy Rev. 15, 1675–1695 (2011)CrossRefGoogle Scholar
  4. 4.
    F. Kuznik, D. David, K. Johannes, J.-J. Roux, Renew. Sust. Energy Rev. 15, 379–391 (2011)CrossRefGoogle Scholar
  5. 5.
    N. Soares, J.J. Costa, A.R. Gaspar, P. Santos, Energy Build. 59, 82–103 (2013)CrossRefGoogle Scholar
  6. 6.
    B. Pomaro, Model. Simul. Eng. 2016, 4165746 (2016)Google Scholar
  7. 7.
    I. Medved’, A. Trník, L. Vozár, Int. J. Heat Mass Transf. 107, 123–132 (2017)CrossRefGoogle Scholar
  8. 8.
    E. Günther, S. Hiebler, H. Mehling, R. Redlich, Int. J. Thermophys. 30, 1257–1269 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    C. Schick, Anal. Bioanal. Chem. 395, 1589–1611 (2009)CrossRefGoogle Scholar
  10. 10.
    C.S.P. Tripathi, P. Losada-Pérez, C. Glorieux, A. Kohlmeier, M.-G. Tamba, G.H. Mehl, J. Leys, Phys. Rev. E 84, 041707 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    O. Zmeškal, P. Štefková, L. Dohnalová, R. Bařinka, Int. J. Thermophys. 34, 926–938 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    A. Eddhahak-Ouni, S. Drissi, J. Colin, J. Neji, S. Care, Appl. Therm. Eng. 64, 32–29 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Giro-Paloma, C. Barreneche, M. Martínez, B. Šumiga, L.F. Cabeza, A.I. Fernández, Energy 87, 223–227 (2015)CrossRefGoogle Scholar
  14. 14.
    Standard DIN 51007:1994-06, General principles of differential thermal analysis (Beuth, Germany, 1994)Google Scholar
  15. 15.
    E. Gmelin, S.M. Sarge, Thermochim. Acta 347, 9–13 (2000)CrossRefGoogle Scholar
  16. 16.
    Standard ISO 11357-1:2016, Plastics – differential scanning calorimetry (DSC)—part 1: General principles (ISO Committee, Geneve, 2016)Google Scholar
  17. 17.
    D. Lencer, M. Salinga, M. Wuttig, Adv. Mater. 23, 2030–2058 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Engineering and Chemistry, Faculty of Civil EngineeringCzech Technical UniversityPragueCzech Republic
  2. 2.Department of Physics, Faculty of Civil EngineeringSlovak University of TechnologyBratislavaSlovakia
  3. 3.Department of PhysicsConstantine the Philosopher UniversityNitraSlovakia

Personalised recommendations