Skip to main content
Log in

Thermal Diffusivity of Compounds Loaded with Carbon Nanofibers

  • ICPPP 18
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, the thermal enhancement in silicone grease-based compounds as a function of carbon nanofiber (CNF) volume fraction was investigated. The thermal diffusivity of the samples was determined by a photopyroelectrical technique with a sample thickness scan. The results show that heat transport on these compounds strongly depends on the CNF volume fraction, due to the high thermal conductivity of CNF compared to the matrix; hence, a low loading percentage of the fibers produce a significant growth in the thermal diffusivity of the composite. The results show that the thermal diffusivity values of the CNF-silicone composite are comparable with commercial thermal compounds based on diamond and Ag microparticle fillers. The thermal conductivity of the samples was calculated, and its enhancement was analyzed using a modified Lewis–Nielsen model, taking into account the dependence of the maximum packing fraction and the form factor with the aspect ratio of the CNF. The influence of the Kapitza thermal resistance was discussed. These materials might find practical applications in systems in which the CNF improves the ebbing of heat away from semiconductor devices or in any other application in which heat dissipation is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.A. Koga, E.C.C. Lopes, H.F.C. Nova, C.R. de Lima, E.C.N. Silva, Int. J. Heat Mass Transf. 64, 759–772 (2013)

    Article  Google Scholar 

  2. D.D.L. Chung, Carbon 50, 3342–3353 (2012)

    Article  Google Scholar 

  3. Y. Xu, X. Luo, D.D.L. Chung, J. Electron. Packag. 124, 188–191 (2002)

    Article  Google Scholar 

  4. C. Lin, D.D.L. Chung, J. Mater. Sci. 42, 9245–9255 (2007)

    Article  ADS  Google Scholar 

  5. S. Zhiqiang, L. Jingfeng, L. Qing, N. Tongyang, W. Gang, Carbon 50, 5605–5617 (2012)

    Article  Google Scholar 

  6. C. Vales-Pinzon, G. Quiñones-Weiss, J.J. Alvarado-Gil, R. Medina-Esquivel, Int. J. Thermophys. 36, 2854–2861 (2015)

    Article  ADS  Google Scholar 

  7. S.G. Prolongo, M.R. Gude, A. Ureña, J. Nanosci. Nanotechnol. 9, 61811–61817 (2009)

    Article  Google Scholar 

  8. R.A. Bulante. U.S. Patent 5949650, September (1998)

  9. C. Chiu, J.C. Shipley, C.B. Simmons. U.S. Patent 6651736 (2003)

  10. V. Gandikota, G.F. Jones, A.S. Fleischer, Exp. Therm. Fluid Sci. 34, 554–561 (2010)

    Article  Google Scholar 

  11. A. Mandelis, J. Vanniasinkam, S. Budhudu, A. Othonos, M. Kokta, Phys. Rev. B 48, 6808–6821 (1993)

    Article  ADS  Google Scholar 

  12. J. Shen, A. Mandelis, B.D. Aloysius, Int. J. Thermophys. 17, 1241–1254 (1996)

    Article  ADS  Google Scholar 

  13. J. Shen, A. Mandelis, T. Ashe, Int. J. Thermophys. 19, 579–593 (1998)

    Article  Google Scholar 

  14. J. Shen, A. Mandelis, Rev. Sci. Instrum. 66, 4999–5005 (1995)

    Article  ADS  Google Scholar 

  15. J.A. Balderas-Lopez, A. Mandelis, J.A. Garcia, Rev. Sci. Instrum. 71, 2933 (2000)

    Article  ADS  Google Scholar 

  16. R.A. Medina-Esquivel, C. Vales-Pinzon, G. Quinones-Weiss, M.A. Zambrano-Arjona, J. Mendez-Gamboa, J.J. Alvarado-Gil, Diam. Relat. Mater. 53, 45–51 (2015)

    Article  ADS  Google Scholar 

  17. http://www.arcticsilver.com/as5.htm

  18. http://innovationcooling.com/index.html

  19. R.A. Medina-Esquivel, J.M. Yáñez-Limón, J.J. Alvarado-Gil, Eur Phys J Spec Top 153, 75–77 (2008)

    Article  Google Scholar 

  20. D. Dadarlat, C. Neamtu, R. Pop, M. Marinelli, F. Mercuri, J. Optoelectron. Adv. Mater 9, 2847–2852 (2007)

    Google Scholar 

  21. C.W. Nan, R. Birringer, D.R. Clarke, H. Gleiter, J. Appl. Phys. 81, 6692–6699 (1997)

    Article  ADS  Google Scholar 

  22. L.E. Nielsen, Ind. Eng. Chem. Fundam. 13, 17–20 (1974)

    Article  Google Scholar 

  23. W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, P. Keblinski, Int. J. Heat Mass Transf. 51, 1431–1438 (2008)

    Article  Google Scholar 

  24. A. Wouterse, S. Luding, A.P. Philipse, Granul Matter 11, 169–177 (2009)

    Article  Google Scholar 

  25. P.L. Kapitza, in Collected Papers, vol. II, ed. by P.L. Kapitza, D. ter Haar (Pergamon Press, Oxford, 1967)

    Google Scholar 

  26. S.T. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, P. Keblinski, Nat. Mater. 2, 731–734 (2003)

    Article  ADS  Google Scholar 

  27. P. Vichchulada, M.A. Cauble, E.A. Abdi, E.I. Obi, Q. Zhang, M.D. Lay, J. Phys. Chem. C 114, 12490–12495 (2010)

    Article  Google Scholar 

  28. G. Zhang, Y. Xia, H. Wang, Y. Tao, G. Tao, S. Tu, H. Wu, J. Compos. Mater. 44, 963–970 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by SEP-CONACYT-CB-135131, SEP-CONACYT-CB-182982, SEP-CONACYT-CB-256497.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Medina-Esquivel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vales-Pinzon, C., Gonzalez-Medina, D., Tapia, J. et al. Thermal Diffusivity of Compounds Loaded with Carbon Nanofibers. Int J Thermophys 39, 89 (2018). https://doi.org/10.1007/s10765-018-2403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2403-2

Keywords

Navigation