Skip to main content
Log in

Photothermal Beam Deflection Spectroscopy for the Determination of Thermal Diffusivity of Soils and Soil Aggregates

  • ICPPP 19
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Photothermal beam deflection spectroscopy (BDS) with a red He–Ne laser (632.8 nm, 35 mW) as an excitation beam source and a green He–Ne laser (543.1 nm, 2 mW) as a probe was used for estimating thermal diffusivity of several types of soil samples and individual soil aggregates with small surfaces (2 × 2 mm). It is shown that BDS can be used on demand for studies of changes in properties of soil entities of different hierarchical levels under the action of agrogenesis. It is presented that BDS clearly distinguishes between thermal diffusivities of different soil types: Sod-podzolic [Umbric Albeluvisols, Abruptic], 29 ± 3; Chernozem typical [Voronic Chernozems, Pachic], 9.9 ± 0.9; and Light Chestnut [Haplic Kastanozems, Chromic], 9.7 ± 0.9 cm2·h−1. Aggregates of chernozem soil show a significantly higher thermal diffusivity compared to the bulk soil. Thermal diffusivities of aggregates of Chernozem for virgin and bare fallow samples differ, 53 ± 4 cm2·h−1 and 45 ± 4 cm2·h−1, respectively. Micromonoliths of different Sod-podzolic soil horizons within the same profile (topsoil, depth 10–14 cm, and a parent rock with Fe illuviation, depth 180–185 cm) also show a significant difference, thermal diffusivities are 9.5 ± 0.8 cm2·h−1 and 27 ± 2 cm2·h−1, respectively. For soil micromonoliths, BDS is capable to distinguish the difference in thermal diffusivity resulting from the changes in the structure of aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Imeson, Desertification, Land Degradation and Sustainability (Wiley, Hoboken, 2012)

    Google Scholar 

  2. C. Boix-Fayos, A. Calvo-Cases, A.C. Imeson, M.D. Soriano-Soto, CATENA 44, 47 (2001). https://doi.org/10.1016/S0341-8162(00)00176-4

    Article  Google Scholar 

  3. Y.T. Delelegn, W. Purahong, A. Blazevic, B. Yitaferu, T. Wubet, H. Göransson, D.L. Godbold, Sci. Rep. 7, 13602 (2017). https://doi.org/10.1038/s41598-017-14128-y

    Article  ADS  Google Scholar 

  4. M.M. Sorour, M.M. Saleh, R.A. Mahmoud, Int. Commun. Heat Mass Transf. 17, 189 (1990). https://doi.org/10.1016/0735-1933(90)90053-M

    Article  Google Scholar 

  5. K.L. Bristow, G.J. Kluitenberg, C.J. Goding, T.S. Fitzgerald, Comput. Electron. Agric. 31, 265 (2001). https://doi.org/10.1016/S0168-1699(00)00186-1

    Article  Google Scholar 

  6. Q.D. Jong van Lier, A. Durigon, Revista Brasileira de Ciência do Solo 37, 106 (2013)

    Article  Google Scholar 

  7. G. Józefaciuk, C. Sławiński, R.T. Walczak, A. Bieganowski, Review of Current Problems in Agrophysics (Inst. of Agrophysics PAS, Warsaw, 2005)

    Google Scholar 

  8. S.R. Evett, N. Agam, W.P. Kustas, P.D. Colaizzi, R.C. Schwartz, Adv. Water Resour. 50, 41 (2012). https://doi.org/10.1016/j.advwatres.2012.04.012

    Article  ADS  Google Scholar 

  9. M. Pawlak, A. Panas, A. Ludwig, A.D. Wieck, Thermochim. Acta 650, 33 (2017). https://doi.org/10.1016/j.tca.2017.02.003

    Article  Google Scholar 

  10. M. Pawlak, M. Maliński, Infrared Phys. Technol. 64, 87 (2014). https://doi.org/10.1016/j.infrared.2014.02.003

    Article  ADS  Google Scholar 

  11. D. Trefon-Radziejewska, J. Bodzenta, Opt. Mater. 45, 47 (2015). https://doi.org/10.1016/j.optmat.2015.03.007

    Article  ADS  Google Scholar 

  12. D. Trefon-Radziejewska, J. Bodzenta, A. Kaźmierczak-Bałata, T. Łukasiewicz, Int. J. Thermophys. 33, 707 (2012). https://doi.org/10.1007/s10765-012-1177-1

    Article  ADS  Google Scholar 

  13. A.C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980). https://doi.org/10.1063/1.91395

    Article  ADS  Google Scholar 

  14. J.C. Murphy, L.C. Aamodt, J. Appl. Phys. 51, 4580 (1980). https://doi.org/10.1063/1.328350

    Article  ADS  Google Scholar 

  15. M. Bertolotti, G.L. Liakhou, R. Li Voti, S. Paoloni, C. Sibilia, J. Appl. Phys. 83, 966 (1998). https://doi.org/10.1063/1.366785

    Article  ADS  Google Scholar 

  16. A. Salazar, A. Sánchez-Lavega, J.M. Terron, M. Gateshki, Bol. Soc. Esp. Ceram. Vidrio 39, 584 (2000)

    Article  Google Scholar 

  17. F.B.G. Astrath, N.G.C. Astrath, J. Shen, J. Zhou, M.L. Baesso, J. Appl. Phys. 104, 066101 (2008). https://doi.org/10.1063/1.2980327

    Article  ADS  Google Scholar 

  18. O.O. Dada, S.E. Bialkowski, Appl. Spectrosc. 62, 1326 (2008)

    Article  ADS  Google Scholar 

  19. J. Bodzenta, A. Kaźmierczak-Bałata, R. Bukowski, M. Nowak, B. Solecka, Int. J. Thermophys. 38, 93 (2017). https://doi.org/10.1007/s10765-017-2219-5

    Article  ADS  Google Scholar 

  20. D. Korte Kobylinska, R.J. Bukowski, J. Bodzenta, S. Kochowski, Opt. Appl. 38, 445 (2008)

    Google Scholar 

  21. D. Korte Kobylinska, R.J. Bukowski, B. Burak, J. Bodzenta, S. Kochowski, Appl. Opt. 46, 5216 (2007). https://doi.org/10.1364/ao.46.005216

    Article  ADS  Google Scholar 

  22. D. Korte, G. Carraro, F. Fresno, M. Franko, Int. J. Thermophys. 35, 2107 (2014). https://doi.org/10.1007/s10765-014-1739-5

    Article  ADS  Google Scholar 

  23. D. Korte, M. Franko, Int. J. Thermophys. 35, 2352 (2014). https://doi.org/10.1007/s10765-014-1568-6

    Article  ADS  Google Scholar 

  24. D. Korte, M. Franko, J. Opt. Soc. Am. A 32, 61 (2015). https://doi.org/10.1364/JOSAA.32.000061

    Article  ADS  Google Scholar 

  25. A. Mathew, J. Ravi, K.N. Madhusoodanan, K.P.R. Nair, T.M.A. Rasheed, Appl. Surf. Sci. 227, 410 (2004). https://doi.org/10.1016/j.apsusc.2003.12.020

    Article  ADS  Google Scholar 

  26. A. Salazar, A. Sánchez-Lavega, J. Fernández, J. Appl. Phys. 74, 1539 (1993). https://doi.org/10.1063/1.354854

    Article  ADS  Google Scholar 

  27. A. Sánchez-Lavega, A. Salazar, A. Ocariz, L. Pottier, E. Gomez, L.M. Villar, E. Macho, Appl. Phys. A 65, 15 (1997). https://doi.org/10.1007/s003390050534

    Article  ADS  Google Scholar 

  28. A. Salazar, A. Sánchez-Lavega, Rev. Sci. Instrum. 65, 2896 (1994). https://doi.org/10.1063/1.1144635

    Article  ADS  Google Scholar 

  29. A. Salazar, A. Sánchez-Lavega, J. Fernandez, J. Appl. Phys. 70, 3031 (1991). https://doi.org/10.1063/1.349334

    Article  ADS  Google Scholar 

  30. J. Rantala, J. Jaarinen, P.K. Kuo, Appl. Phys. A 55, 586 (1992). https://doi.org/10.1007/bf00331678

    Article  ADS  Google Scholar 

  31. C. Vales-Pinzon, J. Ordonez-Miranda, J.J. Alvarado-Gil, J. Appl. Phys. 112, 064909 (2012). https://doi.org/10.1063/1.4754552

    Article  ADS  Google Scholar 

  32. F.A. McDonald, G.C. Wetsel Jr., J. Appl. Phys. 49, 2313 (1978). https://doi.org/10.1063/1.325116

    Article  ADS  Google Scholar 

  33. W.M. Haynes, CRC Handbook of Chemistry and Physics, 96th edn. (CRC Press, Boca Raton, 2015)

    Google Scholar 

  34. J. AndújarMárquez, M. MartínezBohórquez, S. GómezMelgar, Sensors 16, 306 (2016)

    Article  Google Scholar 

  35. P. Koorevaar, G. Menelik, C. Dirksen, Elements of Soil Physics. Developments in Soil Science, vol. 13 (Elsevier, New York, 1983), pp. 193–207

    Book  Google Scholar 

  36. D. Badía, S. López-García, C. Martí, O. Ortíz-Perpiñá, A. Girona-García, J. Casanova-Gascón, Sci. Total Environ. 601–602, 1119 (2017). https://doi.org/10.1016/j.scitotenv.2017.05.254

    Article  ADS  Google Scholar 

  37. L.A. Douglas, Soil Micromorphology: A Basic and Applied Science (Elsevier, New York, 1990)

    Google Scholar 

  38. G.R. Blake, G.C. Steinhardt, X.P. Pombal, J.C.N. Muñoz, A.M. Cortizas, R.W. Arnold, R.J. Schaetzl, F. Stagnitti, J.Y. Parlange, T.S. Steenhuis, W. Chesworth, Y. Mualem, H.J. Morel-Seytoux, O. Spaargaren, W. Chesworth, Y.K. Soon, D.S. Orlov, O. Spaargaren, J.J. Oertli, J. Gliński, J. Lipiec, W. Stępniewski, O. Spaargaren, O. Spaargaren, Podzols, in Encyclopedia of Soil Science, ed. by W. Chesworth (Springer, Dordrecht, 2008), pp. 580–582

    Chapter  Google Scholar 

  39. V.D. Goncharov, K.G. Moiseev, Eurasian Soil Sci. 46, 548 (2013). https://doi.org/10.1134/s1064229313050049

    Article  ADS  Google Scholar 

  40. L.J. Munkholm, R.J. Heck, B. Deen, T. Zidar, Geoderma 268, 52 (2016). https://doi.org/10.1016/j.geoderma.2016.01.005

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research, grant no. 16-33-60147 mol_a_dk to D.V, the Slovenian research Agency research program P1-0034 — “Analytics and chemical characterization of materials and processes” to D.K. and M.F.; and Erasmus + mobility grant to M.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Proskurnin.

Additional information

This article is part of the selected papers presented at the 19th International Conference on Photoacoustic and Photothermal Phenomena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proskurnin, M.A., Korte, D., Rogova, O.B. et al. Photothermal Beam Deflection Spectroscopy for the Determination of Thermal Diffusivity of Soils and Soil Aggregates. Int J Thermophys 39, 81 (2018). https://doi.org/10.1007/s10765-018-2401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2401-4

Keywords

Navigation