Optical Characterization of Tb3+:BaHfO3 Thin Films by Means of Photoacoustic Spectroscopy

  • Yolanda Jiménez Flores
  • Uriel Nogal
  • Víctor Manuel Suárez Quezada
  • José Bruno Rojas-Trigos
ICPPP 19
Part of the following topical collections:
  1. ICPPP-19: Selected Papers of the 19th International Conference on Photoacoustic and Photothermal Phenomena

Abstract

In this work, the synthesis and optical characterization of Al2O3/Tb3+:BaHfO3/Al2O3 heterostructure, grown by ultrasonic spray pyrolysis technique are reported. The X-ray diffraction patterns corroborate that the scintillator layer structure corresponds to perovskite structure, while the elemental chemical composition of it is close to the optimal stoichiometry, but showing barium vacancies. The empirical determination of the optical bandgap energy, achieved by means of the photoacoustic spectroscopy technique, set a principal direct band gap in 3.8 eV, but evidencing the existence of a larger indirect bandgap also. The photoluminescent spectroscopy measurements show that the heterostructure has an intense fluorescent response, congruent to the principal emission lines of trivalent terbium, as was intended to.

Keywords

BaHfO3 Optical characterization Photoacoustic spectroscopy Scintillator Thin films 

Notes

Acknowledgements

The authors acknowledge 2015003 and 20164786 SIP projects and its financial support.

References

  1. 1.
    S.J. Duclos, C.D. Greskovich, R.J. Lyons, J.S. Vartuli, D.M. Hoffman, R.J. Riedner, M.J. Lynch, Nucl. Instrum. Methods Phys. Res. A 505, 68–71 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    C.W.E. van Eijk, Phys. Med. Biol. 47, R85–R106 (2002)CrossRefGoogle Scholar
  3. 3.
    B.D. Milbrath, A.J. Peurrung, M. Bliss, W.J. Weber, J. Mater. Res. 23, 2561–2581 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    E. Mihóková, M. Nikl, J.A. Mareš, A. Beitlerová, A. Vedda, K. Nejezchleb, K. Blažek, C. D’Ambrosio, J. Lumin. 126, 77–80 (2007)CrossRefGoogle Scholar
  5. 5.
    E. Zycha, C. Brecher, A.J. Wojtowicz, H. Lingertat, J. Lumin. 75, 193–203 (1997)CrossRefGoogle Scholar
  6. 6.
    D. Almond, P. Patel, Photothermal Science and Techniques (Chapman and Hall, London, 1996), pp. 119–148Google Scholar
  7. 7.
    A.C. Tam, Rev. Mod. Phys. 58, 381 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    M. García-Hipólito, R. Martínez, O. Alvarez-Fregoso, E. Martínez, C. Falcony, J. Lumin. 93, 9–15 (2001)CrossRefGoogle Scholar
  9. 9.
    E. Van Loef, M.W. Higgins, IEEE Trans. Nucl. Sci. 54, 741–743 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    E.V. van Loef, W.M. Higgins, J. Glodo, C. Brecher, A. Lempicki, V. Venkataramani, W.W. Moses, in 2006 IEEE Nuclear Science Symposium Conference Record, N40-3 (2006), pp. 1538–1540Google Scholar
  11. 11.
    Y.M. Ji, D.Y. Jiang, Z.H. Wu, T. Feng, J.L. Shi, Mater. Res. Bull. 40, 1521–1526 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Langlet, J.C. Joubert, The Pyrosol Process or the Pyrolysis of an Ultrasonically Generated Aerosol (Blackwell, Oxford, 1993), p. 55Google Scholar
  13. 13.
    H.Y. Liu et al., IEEE Photonics Technol. Lett. 26, 1243–1246 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    H.Y. Liu et al., IEEE Trans. Electron Devices 61, 4062–4069 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    I. Stranski, L. Krastanow, Akademie der Wissenschaften Wien 146, 797–810 (1938)Google Scholar
  16. 16.
    D.J. Eaglesham, M. Cerullo, Phys. Rev. Lett. 64, 1943–1946 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    J. Tauc, Mater. Res. Bull. 3, 37–46 (1968)CrossRefGoogle Scholar
  18. 18.
    H. Zhao, A. Chang, Y. Wang, Phys. B Condens. Matter. 404, 2192 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A. Yangthaisong, Phys. Lett. A 377, 927–931 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    A. Bouhemadou, F. Djabi, R. Khenata, Phys. Lett. A 372, 4527 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    T. Maekawa, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 407, 44–48 (2006)CrossRefGoogle Scholar
  22. 22.
    S. Halder, T. Schneller, R. Waser, S.B. Majumder, Phys. Lett. A 516, 4970–4976 (2008)Google Scholar
  23. 23.
    S. Akhtar, S.M. Alay-e-Abbas, S.M. Ghulam Abbas, M.I. Arshad, J. Batool, N. Amin, J. Appl. Phys. 123, 161569 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    O. Fursenko, J. Bauer, G. Lupina, P. Dudek, M. Lukosius, Ch. Wenger, P. Zaumseil, Thin Solid Films 520, 4532–4535 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    M. Gaft, R. Reisfeld, G. Panczer, Luminescence Spectroscopy of Minerals and Materials (Springer, Berlin, 2005), pp. 15–16Google Scholar
  26. 26.
    A. Platonov, The Natural Color of Minerals (Naukova Dumka, Kiev, 1976), p. 264Google Scholar
  27. 27.
    A. Drąg-Jarząbek, M. Kosińska, Ł. John, L.B. Jerzykiewicz, Piotr Sobota, ACS Chem. Mater. 23, 4212–4219 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Politécnico NacionalCICATA-LegariaMéxicoMéxico
  2. 2.Cátedras CONACYT, Instituto Politécnico NacionalCICATA-LegariaMéxicoMéxico
  3. 3.Departamento de Química, Cátedras CONACYTUniversidad Autónoma Metropolitana-IztapalapaMéxicoMéxico

Personalised recommendations