Traceable Measurements of Seebeck Coefficients of Thermoelectric Materials by Using Noble Metal Thermocouples

  • Sebastian Haupt
  • Frank Edler


The characterization of thermoelectric materials as reference materials for Seebeck coefficients at the Physikalisch-Technische Bundesanstalt (PTB) is based on the usage of gold/platinum differential thermocouples. In the case of thermoelectric materials containing silicon, the gold/platinum thermocouples are insufficient due to reactions with the silicon when the samples are at higher temperatures. To overcome this limitation and to expand the temperature range for the certification process, platinum/palladium thermocouples were incorporated in the measurement setup. This paper discusses the influence of the different differential thermocouples used for the measurement of the Seebeck coefficients. Results of a comparative investigation of Seebeck coefficient measurements of a metallic and two semiconducting reference materials in the temperature range from 300 K to 870 K are presented.


Absolute Seebeck coefficient Iron disilicide Reference material Silicon–germanium Thermocouple Thermoelectric materials 


  1. 1.
  2. 2.
  3. 3.
    E.S. Webster, D.R. White, H. Edgar, Measurement of inhomogeneities in MIMS thermocouples using a linear-gradient furnace and dual heat-pipe scanner. Int. J. Thermophys. 36, 444–466 (2014). ADSCrossRefGoogle Scholar
  4. 4.
    E.S. Webster, Drift in type K bare-wire thermocouples from different manufacturers. Int. J. Thermophys. 38, 70 (2017). ADSCrossRefGoogle Scholar
  5. 5.
    F. Edler, E. Lenz, S. Haupt, Reference material for Seebeck coefficients. Int. J. Thermophys. 36, 482–492 (2015). ADSCrossRefGoogle Scholar
  6. 6.
    H. Okamoto, T.B. Massalski, The Au–Si (gold–silicon) system. Bull. Alloy Phase Diagr. 4, 190–198 (1983). CrossRefGoogle Scholar
  7. 7.
    P. Ziolkowski, C. Stiewe, J. de Boor, I. Druschke, K. Zabrocki, F. Edler, S. Haupt, J. König, E. Mueller, Iron disilicide as high-temperature reference material for traceable measurements of Seebeck coefficient between 300 K and 800 K. J. Electron. Mater. 46, 51–63 (2017). ADSCrossRefGoogle Scholar
  8. 8.
    J. Martin, W. Wong-Ng, T. Caillat, I. Yonenaga, M.L. Green, Thermocyclic stability of candidate Seebeck coefficient standard reference materials at high temperature. J. Appl. Phys. (2014). Google Scholar
  9. 9.
    A.T. Burkov, A. Heinrich, P.P. Konstantinov, T. Nakama, K. Yagasaki, Experimental set-up for thermopower and resistivity measurements at 100–1300 K. Meas. Sci. Technol. 12, 264 (2001). ADSCrossRefGoogle Scholar
  10. 10.
    O. Boffoué, A. Jacquot, A. Dauscher, B. Lenoir, Experimental setup for the measurement of the electrical resistivity and thermopower of thin films and bulk materials. Rev. Sci. Instrum. (2005). Google Scholar
  11. 11.
    R.B. Roberts, The absolute scale of thermoelectricity II. Philos. Mag. B 43, 1125 (1981)ADSCrossRefGoogle Scholar
  12. 12.
    IEC 60584-1, Thermocouples—part 1: EMF specifications and tolerances, ed. 3.0, Technical Committee 65B (2013)Google Scholar
  13. 13.
    E. Lenz, S. Haupt, F. Edler, P. Ziolkowski, H.-F. Pernau, Traceable measurements of electrical conductivity and Seebeck coefficient of β-Fe0.95Co0.05Si2 and Ge in the temperature range from 300 K to 850 K. Phys. Status Solidi C 9, 2432 (2012). ADSCrossRefGoogle Scholar
  14. 14.
    E. Lenz, F. Edler, P. Ziolkowski, Traceable thermoelectric measurements of Seebeck coefficients in the temperature range from 300 K to 900 K. Int. J. Thermophys. 349, 1975 (2013). ADSCrossRefGoogle Scholar
  15. 15.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physikalisch-Technische BundesanstaltBerlinGermany

Personalised recommendations