Skip to main content
Log in

Traceable Measurements of Seebeck Coefficients of Thermoelectric Materials by Using Noble Metal Thermocouples

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The characterization of thermoelectric materials as reference materials for Seebeck coefficients at the Physikalisch-Technische Bundesanstalt (PTB) is based on the usage of gold/platinum differential thermocouples. In the case of thermoelectric materials containing silicon, the gold/platinum thermocouples are insufficient due to reactions with the silicon when the samples are at higher temperatures. To overcome this limitation and to expand the temperature range for the certification process, platinum/palladium thermocouples were incorporated in the measurement setup. This paper discusses the influence of the different differential thermocouples used for the measurement of the Seebeck coefficients. Results of a comparative investigation of Seebeck coefficient measurements of a metallic and two semiconducting reference materials in the temperature range from 300 K to 870 K are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. https://www.netzsch-thermal-analysis.com/us/products-solutions/seebeck-coefficient-electrical-conductivity/sba-458-nemesis/. Accessed 19 Mar 2018

  2. http://www.ipm.fraunhofer.de/en/services/contract-measurements/thermoelectric-measurements.html. Accessed 19 Mar 2018

  3. E.S. Webster, D.R. White, H. Edgar, Measurement of inhomogeneities in MIMS thermocouples using a linear-gradient furnace and dual heat-pipe scanner. Int. J. Thermophys. 36, 444–466 (2014). https://doi.org/10.1007/s10765-014-1810-2

    Article  ADS  Google Scholar 

  4. E.S. Webster, Drift in type K bare-wire thermocouples from different manufacturers. Int. J. Thermophys. 38, 70 (2017). https://doi.org/10.1007/s10765-017-2210-1

    Article  ADS  Google Scholar 

  5. F. Edler, E. Lenz, S. Haupt, Reference material for Seebeck coefficients. Int. J. Thermophys. 36, 482–492 (2015). https://doi.org/10.1007/s10765-014-1761-7

    Article  ADS  Google Scholar 

  6. H. Okamoto, T.B. Massalski, The Au–Si (gold–silicon) system. Bull. Alloy Phase Diagr. 4, 190–198 (1983). https://doi.org/10.1007/bf02884878

    Article  Google Scholar 

  7. P. Ziolkowski, C. Stiewe, J. de Boor, I. Druschke, K. Zabrocki, F. Edler, S. Haupt, J. König, E. Mueller, Iron disilicide as high-temperature reference material for traceable measurements of Seebeck coefficient between 300 K and 800 K. J. Electron. Mater. 46, 51–63 (2017). https://doi.org/10.1007/s11664-016-4850-5

    Article  ADS  Google Scholar 

  8. J. Martin, W. Wong-Ng, T. Caillat, I. Yonenaga, M.L. Green, Thermocyclic stability of candidate Seebeck coefficient standard reference materials at high temperature. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4876909

    Article  Google Scholar 

  9. A.T. Burkov, A. Heinrich, P.P. Konstantinov, T. Nakama, K. Yagasaki, Experimental set-up for thermopower and resistivity measurements at 100–1300 K. Meas. Sci. Technol. 12, 264 (2001). https://doi.org/10.1088/0957-0233/12/3/304

    Article  ADS  Google Scholar 

  10. O. Boffoué, A. Jacquot, A. Dauscher, B. Lenoir, Experimental setup for the measurement of the electrical resistivity and thermopower of thin films and bulk materials. Rev. Sci. Instrum. (2005). https://doi.org/10.1063/1.1912820

    Article  Google Scholar 

  11. R.B. Roberts, The absolute scale of thermoelectricity II. Philos. Mag. B 43, 1125 (1981)

    Article  ADS  Google Scholar 

  12. IEC 60584-1, Thermocouples—part 1: EMF specifications and tolerances, ed. 3.0, Technical Committee 65B (2013)

  13. E. Lenz, S. Haupt, F. Edler, P. Ziolkowski, H.-F. Pernau, Traceable measurements of electrical conductivity and Seebeck coefficient of β-Fe0.95Co0.05Si2 and Ge in the temperature range from 300 K to 850 K. Phys. Status Solidi C 9, 2432 (2012). https://doi.org/10.1002/pssc.201200305

    Article  ADS  Google Scholar 

  14. E. Lenz, F. Edler, P. Ziolkowski, Traceable thermoelectric measurements of Seebeck coefficients in the temperature range from 300 K to 900 K. Int. J. Thermophys. 349, 1975 (2013). https://doi.org/10.1007/s10765-013-1516-x

    Article  ADS  Google Scholar 

  15. https://www.isabellenhuette.de/fileadmin/Daten/Praezisionslegierungen/Datenblaetter_Thermo/Englisch/ISOTAN.pdf. Accessed 23 Apr 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Haupt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haupt, S., Edler, F. Traceable Measurements of Seebeck Coefficients of Thermoelectric Materials by Using Noble Metal Thermocouples. Int J Thermophys 39, 72 (2018). https://doi.org/10.1007/s10765-018-2394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2394-z

Keywords

Navigation