Research on Debonding Defects in Thermal Barrier Coatings Structure by Thermal-Wave Radar Imaging (TWRI)

ICPPP 19
  • 44 Downloads
Part of the following topical collections:
  1. ICPPP-19: Selected Papers of the 19th International Conference on Photoacoustic and Photothermal Phenomena

Abstract

In this paper, thermal-wave radar imaging (TWRI) is introduced to detect debonding defects in SiC-coated Ni-based superalloy plates. Linear frequency modulation signal (chirp) is used as the excitation signal which has a large time–bandwidth product. Artificial debonding defects in SiC coating are excited by the laser beam with the light intensity modulated by a chirp signal. Cross-correlation algorithm and chirp lock-in algorithm are introduced to extract the thermal-wave signal characteristic. The comparative experiment between TWRI reflection mode and transmission mode was carried out. Experiments are conducted to investigate the influence of laser power density, chirp period, and excitation frequency. Experimental results illustrate that chirp lock-in phase has a better detection capability than other characteristic parameters. TWRI can effectively detect simulated debonding defects of SiC-coated Ni-based superalloy plates.

Keywords

Chirp signal Debonding defects Thermal barrier coating Thermal-wave radar imaging 

Notes

Acknowledgments

This work was supported by the Foundation for Innovative Research Groups of the National Nature Science Foundation of China under Grant No. 51521003, the Chinese National Natural Science Foundation under Contract Nos. 61571153, 51173034, Self-planned Task of State Key Laboratory of Robotics and System (HIT), and the Programme of Introducing Talents of Discipline of Universities (Grant No. B07108) for the research support.

References

  1. 1.
    L. Gao, H. Guo, L. Wei, Ceram. Int. 41, 8305 (2015)CrossRefGoogle Scholar
  2. 2.
    D.R. Clarke, S.R. Phillpot, Mater. Today 8, 22–29 (2005)CrossRefGoogle Scholar
  3. 3.
    R. Mulaveesala, J.A. Siddiqui, V. Arora, G.V. Subbarao, A. Muniyappa, M. Takei, Proc. SPIE 8705, 1–5 (2013)Google Scholar
  4. 4.
    G. Dua, R. Mulaveesala, Electron. Lett. 49, 1071–1073 (2013)CrossRefGoogle Scholar
  5. 5.
    R. Mulaveesala, J.S. Vaddi, P. Singh, Rev. Sci. Instrum. 79, 094901 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    S. Deshhpande, A. Kulkarni, S. Sampath, H. Herman, Surf. Coat. Technol. 187, 6–16 (2004)CrossRefGoogle Scholar
  7. 7.
    A. Fahr, B. Rogé, J. Thornton, J. Therm. Spray Technol. 15, 46–52 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    B. Rogé, A. Fahr, J.S.R. Giguère, K.L. Mcrae, J. Therm. Spray Technol. 12, 530–535 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    A. Mandelis, M. Mieszkowski, Thermal wave sub-surface defect imaging and tomography apparatus: US, U. S. Patent 4,950,897. (1990)Google Scholar
  10. 10.
    A. Mandelis, Diffusion-Wave Fields (Springer, Berlin, 2001)CrossRefMATHGoogle Scholar
  11. 11.
    R. Mulaveesala, S. Tuli, Appl. Phys. Lett. 89, 492 (2006)CrossRefGoogle Scholar
  12. 12.
    J.Y. Liu, Y. Wang, J.M. Dai, Infrared Phys. Technol. 53, 348–357 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    S. Quek, D. Almond, L. Nelson, T. Barden, Meas. Sci. Technol. 16, 1223 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    B. Franke, Y.H. Sohn, X. Chen, J.R. Price, Z. Mutasim, Surf. Coat. Technol. 200, 1292–1297 (2005)CrossRefGoogle Scholar
  15. 15.
    J.Y. Liu, J.L. Gong, L. Qin, B. Guo, Y. Wang, Int. J. Thermophys. 36, 1226–1235 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Q.J. Tang, J.M. Dai, C.W. Bu, L.T. Qi, D.Y. Li, Appl. Therm. Eng. 107, 463–468 (2016)CrossRefGoogle Scholar
  17. 17.
    G. Newaz, X. Chen, Surf. Coat. Technol. 190, 7–14 (2005)CrossRefGoogle Scholar
  18. 18.
    N. Tabatabaei, A. Mandelis, B.T. Amaechi, Appl. Phys. Lett. 98, 163706 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    N. Tabatabaei, A. Mandelis, Phys. Rev. Lett. 107, 165901 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    F. Wang, J.Y. Liu, Y. Liu, Y. Wang, NDT E Int. 84, 54–66 (2016)CrossRefGoogle Scholar
  21. 21.
    J.Y. Liu, F. Wang, Y. Liu, Y. Wang, Compos. Struct. 138, 214–226 (2016)CrossRefGoogle Scholar
  22. 22.
    J.L. Gong, J.Y. Liu, L. Qin, Y. Wang, NDT E Int. 62, 130–136 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Mandelis, L.M.L. Borm, Rev. Sci. Instr. 57, 617–621 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    R. Mulaveesala, S. Tuli, Appl. Phys. Lett. 89, 191913 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    S. Tuli, R. Mulaveesala, Quant. Infrared Therm. J. 2, 41–54 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechatronics EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.State Key Laboratory of Robotics and System (HIT)HarbinPeople’s Republic of China

Personalised recommendations