Viscosity of Industrially Important Zn–Al Alloys Part II: Alloys with Higher Contents of Al and Si

  • V. M. B. Nunes
  • C. S. G. P. Queirós
  • M. J. V. Lourenço
  • F. J. V. Santos
  • C. A. Nieto de Castro
Article
  • 36 Downloads

Abstract

The viscosity of Zn–Al alloys melts, with industrial interest, was measured for temperatures between 693 K and 915 K, with an oscillating cup viscometer, and estimated expanded uncertainties between 3 and 5 %, depending on the alloy. The influence of minor components, such as Si, Mg and Ce + La, on the viscosity of the alloys is discussed. An increase in the amount of Mg triggers complex melt/solidification processes while the addition of Ce and La renders alloys viscosity almost temperature independent. Furthermore, increases in Al and Si contents decrease melts viscosity and lead to an Arrhenius type behavior. This paper complements a previous study describing the viscosity of Zn–Al alloys with quasi-eutectic compositions.

Keywords

High-temperature alloys Oscillating cup viscometer Phase transitions Viscosity Zn–Al alloys 

Notes

Acknowledgments

The alloys used in this study were produced by Umicore. The authors would like to thank Arcelor Research Industry, Gent, Belgium, and Dr. Serge Classens, who granted permission to publish the data.

References

  1. 1.
    V.M.B. Nunes, M.J.V. Lourenço, F.J.V. Santos, C.A. Nieto de Castro, Int. J. Thermophys. 31, 2348–2360 (2010).  https://doi.org/10.1007/s10765-010-0848-z ADSCrossRefGoogle Scholar
  2. 2.
    M.J. Assael, K. Kakosimos, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato, W.A. Wakeham, J. Phys. Chem. Ref. Data 35, 285–300 (2006).  https://doi.org/10.1063/1.2149380 ADSCrossRefGoogle Scholar
  3. 3.
    M.J. Assael, I.J. Armyra, J. Brillo, S.V. Stankus, J. Wu, W.A. Wakeham, J. Phys. Chem. Ref. Data 41, 033101 (2012).  https://doi.org/10.1063/1.4745598 ADSCrossRefGoogle Scholar
  4. 4.
    V.M.B. Nunes, M.J.V. Lourenço, F.J.V. Santos, C.A. Nieto de Castro, Viscosity of Industrially Important Al-Zn Alloys with High Al and Si Contents, In: 18th Symposium Thermo physics Props, Boulder, Colorado, USA (2012)Google Scholar
  5. 5.
    J. Cheng, J. Grübner, N. Hort, K.U. Kainer, R. Schmid-Fetzer, Meas. Sci. Technol. 25, 062001 (2014).  https://doi.org/10.1088/0957-0233/25/6/062001 ADSCrossRefGoogle Scholar
  6. 6.
    A.L. Bel’tyukov, V.I. Ladýanov, A.I. Shishmarin, High Temp. 52, 185–191 (2014).  https://doi.org/10.1134/S0018151X14010040 CrossRefGoogle Scholar
  7. 7.
    H. Kobatake, J. Schmitz, J. Brillo, J. Mater. Sci. 49, 3541–3549 (2014).  https://doi.org/10.1007/s10853-014-8072-z ADSCrossRefGoogle Scholar
  8. 8.
    O. Takeda, N. Ouchi, Y. Sato, ISIJ Int. 55, 500–503 (2015).  https://doi.org/10.2355/isijinternational.55.500 CrossRefGoogle Scholar
  9. 9.
    A. Yakymovych, V. Vus, S. Mudry, J. Mol. Liq. 219, 845–850 (2016).  https://doi.org/10.1016/j.molliq.2016.04.055 CrossRefGoogle Scholar
  10. 10.
    V.M.B. Nunes, F.J.V. Santos, C.A. Nieto de Castro, Int. J. Thermophys. 18, 435 (1998).  https://doi.org/10.1023/A:1022561326972 Google Scholar
  11. 11.
    V. M. B. Nunes, M. J. Lourenço, F. J. V. Santos and C. A. Nieto de Castro, High Temp. High Press. 35/36, 75–80 (2003/2004)Google Scholar
  12. 12.
    A. L. Beltyukov, N. V. Olyanina, and V. I. Ladyanov, Rus. Metall., pp 156–161 (2016). doi: http://doi.org/10.1134/S0036029516020026
  13. 13.
    W.F. Smith, Structure and Properties of Engineering Alloys, 2nd edn. (Mc-Graw Hill, New York, 1993)Google Scholar
  14. 14.
    D.J. Steinberg, Met. Trans. 5, 1341 (1974).  https://doi.org/10.1007/BF02646618 CrossRefGoogle Scholar
  15. 15.
    C.A. Nieto de Castro, M.J.V. Lourenço, M.B.O. Sampaio, Thermochim. Acta 347, 85 (2000).  https://doi.org/10.1016/S0040-6031(99)00420-7 CrossRefGoogle Scholar
  16. 16.
    M. Trybula, N. Jakse, W. Gasior, A. Pasturel, J. Chem. Phys. 141, 224504 (2014).  https://doi.org/10.1063/1.4903209 ADSCrossRefGoogle Scholar
  17. 17.
    R.P. Chhabra, A. Tripathi, High Temp. High Press. 25, 713–718 (1993)Google Scholar
  18. 18.
    R.P. Chhabra, J. Alloys Compd. 221, L1–L3 (1995).  https://doi.org/10.1016/0925-8388(94)01542-2 CrossRefGoogle Scholar
  19. 19.
    V. Sklyarchuk, Y. Plevachuk, A. Yakymovych, S. Eckert, G. Gerbeth, K. Eigenfeld, Int. J. Thermophys. 30, 1400–1410 (2009).  https://doi.org/10.1007/s10765-009-0585-3 CrossRefGoogle Scholar
  20. 20.
    Y.H. Liu, Metall. Mater. Trans. A 37A, 2767–2771 (2006).  https://doi.org/10.1007/BF02586109 CrossRefGoogle Scholar
  21. 21.
    M.E. Trybula, T. Gancarz, W. Gasior, Fluid Phase Equilib. 421, 39–48 (2016).  https://doi.org/10.1016/j.fluid.2016.03.013 CrossRefGoogle Scholar
  22. 22.
    T. Gancarz, Fluid Phase Equilib. 427, 97–103 (2016).  https://doi.org/10.1016/j.fluid.2016.06.045 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Escola Superior de Tecnologia, Instituto Politécnico de TomarTomarPortugal
  2. 2.Centro de Química Estrutural, Faculdade de Ciências da Universidade de LisboaLisbonPortugal

Personalised recommendations