Advertisement

Thermal Emittance of \(\hbox {La}_{0.7}\hbox {Ca}_{0.3-x}\hbox {K}_x\hbox {MnO}_3\) Coatings on Aluminum Substrate

  • Desong Fan
  • Si Sun
  • Li Guo
Article
  • 113 Downloads

Abstract

A novel thermal control coating was presented based on the thermochromism of manganite. The pigment of K-doped manganite nanoparticles was dispersed into polymer matrix to prepare the coating with curing below 200 \(^{\circ }\)C. The nanoparticles size mainly distributes around 100–200 nm, and it shows a comparable stoichiometric ratio. The phase transition of the nanoparticles was observed from ferromagnetic metallic to paramagnetic insulator state. With increasing K doping level, the phase transition temperature increases, achieving controllable adjustment. Coating surface with and without pore defect was obtained by different polymer matrix. A sharp emittance variation was observed with increasing temperature in K-doped coating. The variation magnitude of emittance is up to 0.46, which is attractive to space thermal control. It is suggested that the pigment content of 50 wt% is sufficient to realize a large emittance variation.

Keywords

K-doped manganite Thermochromic coating Variable emittance 

Notes

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (Grant No. 51406086), the Natural Science Foundation of Jiangsu Province (Grant No. BK20140783), and the Six Talent Peaks Project in Jiangsu Province (No. XNY-031).

References

  1. 1.
    Y. Tokura, Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Tokura, Rep. Prog. Phys. 69, 797 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    S. Panwar, V. Kumar, A. Chaudhary, R. Kumar, I. Singh, Solid State Commun. 223, 32 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    K.A. GschneidnerJr, V. Pecharsky, A. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    M.H. Phan, S.C. Yu, J. Magn. Magn. Mater. 308, 325 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    M. Bejar, E. Dhahri, E. Hlil, S. Heniti, J. Alloy. Compd. 440, 36 (2007)CrossRefGoogle Scholar
  7. 7.
    W. Zhong, W. Chen, C. Au, Y. Du, J. Magn. Magn. Mater. 261, 238 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, Y. Nakamura, J. Thermophys. Heat. Transf. 17, 264 (2003)CrossRefGoogle Scholar
  9. 9.
    D. Fan, Q. Li, Y. Xuan, H. Tan, J. Fang, Appl. Therm. Eng. 51, 255 (2013)CrossRefGoogle Scholar
  10. 10.
    D. Fan, Q. Li, Y. Xuan, Y. Xia, Sol. Energ. Mat. Sol. C. 144, 331 (2016)CrossRefGoogle Scholar
  11. 11.
    C. Zener, Phys. Rev. 82, 403 (1951)ADSCrossRefGoogle Scholar
  12. 12.
    M. Bejar, H. Feki, E. Dhahri, M. Ellouze, M. Balli, E. Hlil, J. Magn. Magn. Mater. 316, e707 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Phys. Rev. Lett. 75, 914 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    L.M. Rodriguez-Martinez, J.P. Attfield, Phys. Rev. B 54, R15622 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    S. Asthana, A. Nigam, S. Malik, D. Bahadur, J. Alloy. Compd. 450, 136 (2008)CrossRefGoogle Scholar
  16. 16.
    D. Varshney, M. Shaikh, J. Alloy. Compd. 589, 558 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Tomioka, A. Asamitsu, Y. Tokura, Phys. Rev. B 63, 024421 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Y.M. Kang, N.H. Ka, D.G. Yoo, G.M. Shin, K.P. Ko, S.I. Yoo, IEEE Trans. Magn. 45, 2572 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A. Ulyanov, I.S. Maksimov, E.B. Nyeanchi, Y.V. Medvedev, S.C. Yu, N.Y. Starostyuk, B. Sundqvist, J. Appl. Phys. 91, 7739 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    M.H. Phan, S.C. Yu, N.H. Hur, Appl. Phys. Lett. 86, 072504 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    K. Shimazaki, S. Tachikawa, A. Ohnishi, Y. Nagasaka, Int. J. Thermophys. 22, 1549 (2001)CrossRefGoogle Scholar
  22. 22.
    K. Shimazaki, S. Tachikawa, A. Ohnishi, Y. Nagasaka, High Temp-High Press. 33, 525 (2001)CrossRefGoogle Scholar
  23. 23.
    A. Ochi, T. Mori, Y. Shimakawa, Y. Kubo, A. Okamoto, Y. Nakamura, S. Tachikawa, A. Ohnishi, K. Shimazaki, Jpn. J. Appl. Phys. 41, 7263 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    L. Li, C. Wang, Y. Shen, Q. Shen, L. Zhang, J. Mater. Sci-Mater. Electron. 26, 2508 (2015)CrossRefGoogle Scholar
  25. 25.
    L. Guo, D. Fan, Q. Li, Mater. Res. Express. 3, 025008 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    X. Shen, L. Li, X. Wu, Z. Gao, G. Xu, J. Alloy. Compd. 509, 8116 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Mikhailov, T. Utebekov, Inorg. Mater. 48, 1120 (2012)CrossRefGoogle Scholar
  28. 28.
    D. Fan, Q. Li, Y. Xuan, P. Dai, Thin Solid Films 570, Part A, 123 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    P. Herve, N. Rambure, A. Sadou, D. Ramel, L. Francou, P. Delouard, E. Gavila, Cryogenics 48, 463 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    D. Fan, Q. Li, P. Dai, Acta Astronaut. 121, 144 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    T. Fu, P. Tan, C. Pang, Meas. Sci. Technol. 23, 025006 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    S. Moghaddam, J. Lawler, J. Currano, J. Kim, J. Thermophys. Heat. Transf. 21, 128 (2007)CrossRefGoogle Scholar
  33. 33.
    J. Hameury, B. Hay, J.R. Filtz, Int. J. Thermophys. 28, 1607 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    L. Guo, D. Fan, Q. Li, Y. Xuan, Chin. Sci. Bull. 62, 432 (2017)CrossRefGoogle Scholar
  35. 35.
    X. Shen, G. Xu, C. Shao, Solid State Commun. 149, 852 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    S. Bhattacharya, S. Pal, R. Mukherjee, B. Chaudhuri, S. Neeleshwar, Y. Chen, S. Mollah, H. Yang, J. Magn. Magn. Mater. 269, 359 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.Nanjing Wuzhou Refrigeration Group Co. Ltd.NanjingChina

Personalised recommendations