Heat and Moisture Transport and Storage Parameters of Bricks Affected by the Environment

  • Václav Kočí
  • Monika Čáchová
  • Dana Koňáková
  • Eva Vejmelková
  • Miloš Jerman
  • Martin Keppert
  • Jiří Maděra
  • Robert Černý


The effect of external environment on heat and moisture transport and storage properties of the traditional fired clay brick, sand–lime brick and highly perforated ceramic block commonly used in the Czech Republic and on their hygrothermal performance in building envelopes is analyzed by a combination of experimental and computational techniques. The experimental measurements of thermal, hygric and basic physical parameters are carried out in the reference state and after a 3-year exposure of the bricks to real climatic conditions of the city of Prague. The obtained results showed that after 3 years of weathering the porosity of the analyzed bricks increased up to five percentage points which led to an increase in liquid and gaseous moisture transport parameters and a decrease in thermal conductivity. Computational modeling of hygrothermal performance of building envelopes made of the studied bricks was done using both reference and weather-affected data. The simulated results indicated an improvement in the annual energy balances and a decrease in the time-of-wetness functions as a result of the use of data obtained after the 3-year exposure to the environment. The effects of weathering on both heat and moisture transport and storage parameters of the analyzed bricks and on their hygrothermal performance were found significant despite the occurrence of warm winters in the time period of 2012–2015 when the brick specimens were exposed to the environment.


Bricks Hygric properties Hygrothermal performance Thermal properties Weathering 



This research has been supported by the Czech Science Foundation, under Project No. P105/12/G059.


  1. 1.
    D. Snoeck, N. De Belie, Constr. Build. Mater. 95, 774 (2015)CrossRefGoogle Scholar
  2. 2.
    Z. Pavlík, L. Fiala, M. Jerman, E. Vejmelková, M. Pavlíková, M. Keppert, R. Černý, Int. J. Thermophys. 35, 1912 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    V. Kočí, J. Kočí, J. Maděra, R. Černý, Energy 111, 947 (2016)CrossRefGoogle Scholar
  4. 4.
    L.V. Korah, P.M. Nigay, T. Cutard, A. Nzihou, S. Thomas, Constr. Build. Mater. 125, 654 (2016)CrossRefGoogle Scholar
  5. 5.
    J.M. Pereira, P.B. Lourenço, Mater. Struct. 49, 4799 (2016)CrossRefGoogle Scholar
  6. 6.
    V. Kočí, J. Maděra, M. Jerman, A. Trník, R. Černý, Int. J. Therm. Sci. 86, 365 (2014)CrossRefGoogle Scholar
  7. 7.
    K.D. Antoniadis, M.J. Assael, C.A. Tsiglifisi, S.K. Mylona, Int. J. Thermophys. 33, 2274 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J. Kočí, J. Maděra, M. Jerman, R. Černý, Energy Build. 99, 61 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Benedetti, M. Federica, R. Marcio, in 8th International Masonry Conference (Technical University of Dresden, Dresden, 2010), p. 1Google Scholar
  10. 10.
    P.B. Lourenco, R. van Hees, F. Fernandes, B. Lubelli, in Structural Rehabilitation of Old Buildings, ed. by A. Costa, et al. (Springer, Berlin, 2014), p. 109CrossRefGoogle Scholar
  11. 11.
    K. Elert, G. Cultrone, C.R. Navarro, E.S. Pardo, J. Cult. Herit. 4, 91 (2003)CrossRefGoogle Scholar
  12. 12.
    M.S. Tite, Y. Maniatis, Nature 257, 122 (1975)ADSCrossRefGoogle Scholar
  13. 13.
    G. Cultrone, E. Sebastian, O. Cazalla, M.J. De La Torre López, in Proceedings of the Second Mediterranean Clay Meeting (Aveiro, Portugal, 1998), p. 298Google Scholar
  14. 14.
    V. Kočí, Z. Bažantová, R. Černý, Energy Build. 76, 211 (2014)CrossRefGoogle Scholar
  15. 15.
    T.J. Massart, R.H.J. Peerlings, M.G.D. Geers, Int. J. Damage Mech 16, 199 (2007)CrossRefGoogle Scholar
  16. 16.
    G. Castellazzi, C. Colla, S. de Miranda, G. Formica, E. Gabrielli, L. Molari, F. Ubertini, Constr. Build. Mater. 41, 717 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Kruis, AIP Conf. Proc. 1738, 360008 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Kruis, T. Krejčí, M. Šejnoha, in High Performance Computing in Science and Engineering: Second International Conference, HPCSE 2015, ed. by T. Kozubek et al. (Springer, 2016), p. 50Google Scholar
  19. 19.
    S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Černý, Z. Pavlík, C. Hall, K. Kumaran, L. Pell, J. Therm. Envel. Build. Sci. 27, 307 (2004)CrossRefGoogle Scholar
  20. 20.
    ČSN EN 772-11, Methods of Test for Masonry UnitsPart 11: Determination of Water Absorption of Aggregate Concrete, Manufactured Stone and Natural Stone Masonry Units due to Capillary Action and the Initial Rate of Water Absorption of Clay Masonry Units (Czech Office for Standards, Metrology and Testing, Prague, 2011)Google Scholar
  21. 21.
    E. Vejmelková, M. Keppert, Z. Keršner, P. Rovnaníková, R. Černý, Constr. Build. Mater. 31, 22 (2012)CrossRefGoogle Scholar
  22. 22.
    EN ISO 12572, Hygrothermal Performance of Building Materials and Products. Determination of Water Vapour Transmission Properties (The European Committee for Standardization, Brussels, 2001)Google Scholar
  23. 23.
    V. Kočí, J. Kočí, J. Maděra, Z. Pavlík, X. Gu, W. Zhang, R. Černý, J. Build. Phys. (2018). Google Scholar
  24. 24.
    J. Kruis, T. Koudelka, T. Krejčí, Math. Comput. Simul. 80, 1578 (2010)CrossRefGoogle Scholar
  25. 25.
    J. Maděra, J. Kočí, V. Kočí, J. Kruis, Adv. Eng. Softw. 113, 47 (2017)CrossRefGoogle Scholar
  26. 26.
    ČSN 73 0540-2, Thermal Protection of BuildingsPart 2: Requirements (Czech Office for Standards, Metrology and Testing, Prague, 2011)Google Scholar
  27. 27.
    F. Corvo, T. Perez, Y. Martin, J. Reyes, L.R. Dzib, J. González-Sanchéz, A. Castaneda, Corros. Sci. 50, 206 (2008)CrossRefGoogle Scholar
  28. 28.
    J. Van den Bulcke, J. Van Acker, J. De Smet, Build. Environ. 44, 2368 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Kočí, J. Maděra, R. Černý, Build. Environ. 76, 54 (2014)CrossRefGoogle Scholar
  30. 30.
    ISO/EIC 98-3:2008, Evaluation of Measurement Data e Guide to the Expression of Uncertainty in Measurements (Joint Committee for Guides in Metrology, France, 2008)Google Scholar
  31. 31.
    R. Dachowski, K. Komisarczyk, Proc. Eng. 161, 747 (2016)CrossRefGoogle Scholar
  32. 32.
    G. Cultrone, E. Sebastián, M. Ortega, Huertas. Cem. Concr. Res. 35, 2278 (2005)CrossRefGoogle Scholar
  33. 33.
    A. Kloužková, P. Zemanová, M. Kohoutková, Z. Mazač, Appl. Clay Sci. 119, 358 (2016)CrossRefGoogle Scholar
  34. 34.
    X.G. de Castro, S. Fernando, M.P.C. de Almeida, A. Jonas, in Advances in Ceramics—Characterization, Raw Materials, Processing, Properties, Degradation and Healing, ed. by C. Sikalidis (InTech, London, 2011), p. 301Google Scholar
  35. 35.
    Z. Pavlík, R. Černý, Int. J. Thermophys. 33, 1704 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Engineering and Chemistry, Faculty of Civil EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations