Advertisement

Evaluation of Different Techniques of Active Thermography for Quantification of Artificial Defects in Fiber-Reinforced Composites Using Thermal and Phase Contrast Data Analysis

  • Christiane Maierhofer
  • Mathias Röllig
  • Michael Gower
  • Maria Lodeiro
  • Graham Baker
  • Christian Monte
  • Albert Adibekyan
  • Berndt Gutschwager
  • Lenka Knazowicka
  • Ales Blahut
ICPPP 19
  • 155 Downloads
Part of the following topical collections:
  1. ICPPP-19: Selected Papers of the 19th International Conference on Photoacoustic and Photothermal Phenomena

Abstract

For assuring the safety and reliability of components and constructions in energy applications made of fiber-reinforced polymers (e.g., blades of wind turbines and tidal power plants, engine chassis, flexible oil and gas pipelines) innovative non-destructive testing methods are required. Within the European project VITCEA complementary methods (shearography, microwave, ultrasonics and thermography) have been further developed and validated. Together with partners from the industry, test specimens have been constructed and selected on-site containing different artificial and natural defect artefacts. As base materials, carbon and glass fibers in different orientations and layering embedded in different matrix materials (epoxy, polyamide) have been considered. In this contribution, the validation of flash and lock-in thermography to these testing problems is presented. Data analysis is based on thermal contrasts and phase evaluation techniques. Experimental data are compared to analytical and numerical models. Among others, the influence of two different types of artificial defects (flat bottom holes and delaminations) with varying diameters and depths and of two different materials (CFRP and GFRP) with unidirectional and quasi-isotropic fiber alignment is discussed.

Keywords

Active thermography CFRP Delaminations Flash excitation Flat bottom holes GFRP Lock-in excitation 

Mathematics Subject Classification

10.105 10.200 

Notes

Acknowledgements

The EMRP project has been jointly funded by the EMRP participating countries within EURAMET and the European Union under the project no. ENG57 VITCEA Validated Inspection Techniques for Composites in Energy Applications.

References

  1. 1.
    M. Kühnel, T. Kraus, The global CFRP Market 2016. Carbon Composites e.V. (2016), https://www.carbon-composites.eu/media/2307/cfrp-market-report-ec-2016-kuehnel-freigabe.pdf. Accessed 21 Mar 2018
  2. 2.
    M. Gower, M. Lodeiro, A. Aktas et al., Design and manufacture of reference and natural defect artefacts for the evaluation of NDE techniques for fiber reinforced plastic (FRP) composites in energy applications, in Proceedings of 19th World Conference on Non-destructive Testing (2016). http://www.ndt.net/article/wcndt2016/papers/we1e4.pdf. Accessed 21 Mar 2018
  3. 3.
    C. Maierhofer, R. Krankenhagen, M. Röllig et al, Quantitative evaluation of artificial and natural defects in fiber reinforced structures with active thermography and ultrasonics, in Proceedings of Jahrestagung der DGZfP 2017, BB 162, Di1B1, pp. 1–8, 2017, http://www.ndt.net/article/dgzfp2017/papers/di1b1.pdf [in German]. Accessed 21 Mar 2018
  4. 4.
    X. Maldague, Theory and Practice of Infrared Technology for Non-destructive Testing (Wiley, Toronto, 2001)Google Scholar
  5. 5.
    V.P. Vavilov, D.D. Burleigh, Review of pulsed thermal NDT: physical principles, theory and data processing. NDT&E Int. 66, 182–192 (2015)Google Scholar
  6. 6.
    V.P. Vavilov, S.S. Pawar, A novel approach for one-sided thermal nondestructive testing of composites by using infrared thermography. Polym. Test. 24, 224–233 (2015)CrossRefGoogle Scholar
  7. 7.
    C. Ibarra-Castanedo, X. Maldague, Pulsed phase thermography reviewed. QIRT J. 1, 47–70 (2004)CrossRefGoogle Scholar
  8. 8.
    S.M. Shepard, Advances in pulsed thermography, in Proceedings of SPIE 4360, Thermosense XXIII, p. 511, 2001. http://dx.doi.org/10.1117/12.421032
  9. 9.
    N. Rajic, Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures. Comp. Struct. 58, 521–528 (2002)CrossRefGoogle Scholar
  10. 10.
    G. Busse, D. Wu, W. Karpen, Thermal wave imaging with phase sensitive modulated thermography. J. Appl. Phys. 71, 3962–3965 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    O. Breitenstein, W. Warta, M. Langenkamp, Lock-in Thermography—Basics and Use for Evaluating Electronic Devices and Materials, 2nd edn. (Springer, Berlin, 2010)Google Scholar
  12. 12.
    J.-C. Krapez, Thermal contrasts in pulsed infrared thermography, in Chapter 13, Handbook vol. 3: ‘Infrared and Thermal Testing’, ed. by X.P.V. Maldague, P.O. Moore (The American Society for Non Destructive Testing (ASNT), Columbus, 2001), pp. 411–439Google Scholar
  13. 13.
    D.P. Almond, S.G. Pickering, An analytical study of the pulsed thermography defect detection limit. J. Appl. Phys. 111, 093510 (2012).  https://doi.org/10.1063/1.4704684 ADSCrossRefGoogle Scholar
  14. 14.
    B. Oswald-Tranta, Comparative study of thermal contrast and contrast in thermal signal derivatives in pulse thermography. NDT&E Int. 91, 36–46 (2017).  https://doi.org/10.1016/j.ndteindt.2017.06.005 CrossRefGoogle Scholar
  15. 15.
    M.F. Beemer, S.M. Shepard, Aspect ratio considerations for flat bottom hole defects in active thermography. QIRT Journal (2017).  https://doi.org/10.1080/17686733.2017.1328642 Google Scholar
  16. 16.
    C. Meola, G.M. Carlomagno, L. Giorleo, Geometrical limitations to detection of defects in composites by means of infrared thermography. J. Nondestruct. Eval. 23, 125–132 (2004).  https://doi.org/10.1007/s10921-004-0819-z CrossRefGoogle Scholar
  17. 17.
    C. Wallbrink, S.A. Wade, R. Jones, The effect of size on the quantitative estimation of defect depth in steel structures using lock-in thermography. J. Appl. Phys. 101, 104907-1-8 (2007).  https://doi.org/10.1063/1.2732443 ADSCrossRefGoogle Scholar
  18. 18.
    W. Bai, B.S. Wong, Photothermal models for lock-in thermographic evaluation of plates with finite thickness under convection conditions. J. Appl. Phys. 89, 3275 (2001).  https://doi.org/10.1063/1.1344916 ADSCrossRefGoogle Scholar
  19. 19.
    S. Pickering, D. Almond, Matched excitation energy comparison of the pulse and lock-in thermography NDE techniques. NDT&E Int. 41, 501–509 (2008)CrossRefGoogle Scholar
  20. 20.
    K. Chatterjee, S. Tuli, S.G. Pickering, D.P.A. Almond, Comparison of the pulsed, lock-in and frequency modulated thermography nondestructive evaluation techniques. NDT&E Int. 44, 655–667 (2011)CrossRefGoogle Scholar
  21. 21.
    C. Ibarra-Castanedo, C. Piau, J.-M. Guilbert, N.P. Avdelidis, M. Genest, A. Bendada, X.P.V. Maldague, Comparative study of active thermography techniques for the nondestructive evaluation of honeycomb structures. RNDE 20, 1–31 (2009)Google Scholar
  22. 22.
    R. Montanini, Quantitative determination of subsurface defects in a reference specimen made of Plexiglas by means of lock-in and pulse phase infrared thermography. Infrared Phys. Technol. 53, 363–371 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    C. Maierhofer, R. Krankenhagen, M. Röllig et al., Characterisation of artificial and natural defects in fibre reinforced plastics designed for energy applications using active thermography, in Proceedings of 19 th World Conference on Non-destructive Testing 2016, http://www.ndt.net/article/wcndt2016/papers/we2i4.pdf. Accessed 21 Mar 2018
  24. 24.
    B. Oswald-Tranta, R. Schmidt, T. Grandl, Comparison of samples with flat bottom holes and with hidden occlusions using flash thermography, in Proceedings of QIRT 2016, Gdansk, pp. 611–620, 2016,  https://doi.org/10.21611/qirt.2016.097
  25. 25.
    W. Bai, B.S. Wong, Thermal wave scattering from subsurface defects in plates with finite thickness under convective environments. Meas. Sci. Technol. 13, 700–705 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    C.A. Bennett, R.R. Patty, Thermal wave interferometry: a potential application of the photoacoustic effect. Appl. Opt. 21, 49–54 (1982)ADSCrossRefGoogle Scholar
  27. 27.
    D.P. Almond, P.M. Patel, Photothermal Science and Techniques (Chapman-Hall, London, 1996), p. 237Google Scholar
  28. 28.
    D.P. Almond, S.L. Angioni, S.G. Pickering, Long pulse excitation thermographic non-destructive evaluation. NDT&E Int. 87, 7–14 (2017)CrossRefGoogle Scholar
  29. 29.
    B. Braunschweig, Erzeugung und Charakterisierung kurzer Laserpulse, 2006, https://www.iept.tu-clausthal.de/fileadmin/files/praktika/KurzePulse.pdf. Accessed 21 Mar 2018
  30. 30.
    B. Oswald-Tranta, Comparison of time and frequency behavior in TSR and PPT evaluation, in Proc. SPIE 9861, Thermosense: Thermal Infrared Applications XXXVIII, 98610P (11 May 2016),  https://doi.org/10.1117/12.2228864
  31. 31.
    C. Maierhofer, R. Krankenhagen, M. Röllig et al., Influence of thermal and optical materials properties on the characterization of defects in fiber reinforced composites with active thermography [in German]. Tech. Mess. (2017).  https://doi.org/10.1515/teme-2017-0078 zbMATHGoogle Scholar
  32. 32.
    C. Monte, J. Hollandt, The measurement of directional spectral emissivity in the temperature range from 80°C to 400°C at the Physikalisch-Technische Bundesanstalt. High Temp. High Press. 39, 151–164 (2010)Google Scholar
  33. 33.
    A. Adibekyan, E. Kononogova, C. Monte, B. Gutschwager, J. Hollandt, Emissivity, reflectivity and transmissivity of semitransparent fibre reinforced plastic composites. Berichtsband BB 163 Thermographie-Kolloquium 2017, DGZfP, Berlin, https://www.dgzfp.de/Portals/thermo2017/BB/17.pdf. Accessed 21 Mar 2018
  34. 34.
    X. Maldague, F. Galmiche, A. Ziadi, Advances in pulsed phase thermography. Infrared Phys. Technol. 43, 175–181 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    VDI/VDE Standard 5585 Part 1/Draft 10/2016 Technical Temperature Measurement—Temperature Measurement with Thermographic Cameras—Metrological CharacterisationGoogle Scholar
  36. 36.
    C. Antolis, N. Rajic, Optical lock-in thermography for structural health monitoring—a study into infrared detector performance. Procedia Eng. 188, 471–478 (2017)CrossRefGoogle Scholar
  37. 37.
    S.M. Shepard, Advances in pulsed thermography, in Proceedings of SPIE 7299, Thermosense XXXI, 2009, http://dx.doi.org/10.1117/12.820062

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Christiane Maierhofer
    • 1
  • Mathias Röllig
    • 1
  • Michael Gower
    • 2
  • Maria Lodeiro
    • 2
  • Graham Baker
    • 2
  • Christian Monte
    • 3
  • Albert Adibekyan
    • 3
  • Berndt Gutschwager
    • 3
  • Lenka Knazowicka
    • 4
  • Ales Blahut
    • 4
  1. 1.Division 8.7 Thermographic MethodsBundesanstalt für Materialforschung und -prüfung (BAM)BerlinGermany
  2. 2.Materials DivisionNational Physical Laboratory (NPL)TeddingtonUK
  3. 3.Division 7.3 Detector Radiometry and Radiation ThermometryPhysikalisch-Technische Bundesanstalt (PTB)BerlinGermany
  4. 4.Thermal Units Department – FMCzech Metrological Institute (CMI)Prague 10Czech Republic

Personalised recommendations