Skip to main content
Log in

Evaluation of Thermodynamic Models for Predicting Phase Equilibria of \(\hbox {CO}_{2}\) + Impurity Binary Mixture

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

For the design and operation of \(\hbox {CO}_{2}\) capture and storage (CCS) processes, equation of state (EoS) models are used for phase equilibrium calculations. Reliability of an EoS model plays a crucial role, and many variations of EoS models have been reported and continue to be published. The prediction of phase equilibria for \(\hbox {CO}_{2}\) mixtures containing \(\hbox {SO}_{2}\), \(\hbox {N}_{2}\), NO, \(\hbox {H}_{2}\), \(\hbox {O}_{2}\), \(\hbox {CH}_{4}\), \(\hbox {H}_{2}\mathrm{S}\), Ar, and \(\hbox {H}_{2}\mathrm{O}\) is important for \(\hbox {CO}_{2}\) transportation because the captured gas normally contains small amounts of impurities even though it is purified in advance. For the design of pipelines in deep sea or arctic conditions, flow assurance and safety are considered priority issues, and highly reliable calculations are required. In this work, predictive Soave–Redlich–Kwong, cubic plus association, Groupe Européen de Recherches Gazières (GERG-2008), perturbed-chain statistical associating fluid theory, and non-random lattice fluids hydrogen bond EoS models were compared regarding performance in calculating phase equilibria of \(\hbox {CO}_{2}\)-impurity binary mixtures and with the collected literature data. No single EoS could cover the entire range of systems considered in this study. Weaknesses and strong points of each EoS model were analyzed, and recommendations are given as guidelines for safe design and operation of CCS processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. T. Kerr, B. Beck, Technology Roadmap: Carbon Capture and Storage (International Energy Agency (IEA), 2013)

  2. B. Metz, O. Davidson, H. de Coninck, M. Loos, L. Meyer, Carbon Dioxide Capture and Storage (Cambridge University Press, UK, 2006)

    Google Scholar 

  3. H. Li, Thermodynamic Properties of CO \(_2\) Mixtures and Their Applications in Advanced Power Cycles with CO \(_2\) Capture Processes, Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden, 2008

  4. E.D. Sloan Jr., C. Koh, Clathrate Hydrates of Natural Gases (CRC Press, Boca Raton, 2007)

    Google Scholar 

  5. I.S. Cole, P. Corrigan, S. Sim, N. Birbilis, Int. J. Greenh. Gas Control 5, 749 (2011)

    Google Scholar 

  6. C. Coquelet, A. Valtz, P. Arpentinier, Fluid Phase Equilib. 382, 205 (2014)

    Google Scholar 

  7. M. Ahmad, J. Gernert, E. Wilbers, Fluid Phase Equilib. 363, 149 (2014)

    Google Scholar 

  8. H. Li, J.P. Jakobsen, Ø. Wilhelmsen, J. Yan, Appl. Energy 88, 3567 (2011)

    Google Scholar 

  9. H. Li, J. Yan, Appl. Energy 86, 826 (2009)

    Google Scholar 

  10. O. Kunz, W. Wagner, J. Chem. Eng. Data 57, 3032 (2012)

    Google Scholar 

  11. J. Gernert, R. Span, J. Chem. Thermodyn. 93, 274 (2016)

    Google Scholar 

  12. N.I. Diamantonis, G.C. Boulougouris, E. Mansoor, D.M. Tsangaris, I.G. Economou, Ind. Eng. Chem. Res. 52, 3933 (2013)

    Google Scholar 

  13. I. Tsivintzelis, G.M. Kontogeorgis, M.L. Michelsen, E.H. Stenby, Fluid Phase Equilib. 306, 38 (2011)

    Google Scholar 

  14. X. Liang, I. Tsivintzelis, G.M. Kontogeorgis, Ind. Eng. Chem. Res. 53, 14493 (2014)

    Google Scholar 

  15. J.H. Lee, S.H. Kim, J.W. Kang, C.S. Lee, Fluid Phase Equilib. 409, 136 (2016)

    Google Scholar 

  16. M.-J. Huron, J. Vidal, Fluid Phase Equilib. 3, 255 (1979)

    Google Scholar 

  17. D.S.H. Wong, S.I. Sandler, AlChE J. 38, 671 (1992)

    Google Scholar 

  18. D. Wong, H. Obbey, S.I. Sandler, Ind. Eng. Chem. Res. 31(8), 2033 (1992)

    Google Scholar 

  19. T. Holderbaum, J. Gmehling, Fluid Phase Equilib. 70, 251 (1991)

    Google Scholar 

  20. S. Horstmann, K. Fischer, J. Gmehling, Fluid Phase Equilib. 167, 173 (2000)

    Google Scholar 

  21. S. Horstmann, A. Jabłoniec, J. Krafczyk, K. Fischer, J. Gmehling, Fluid Phase Equilib. 227, 157 (2005)

    Google Scholar 

  22. H.K. Hansen, P. Rasmussen, A. Fredenslund, M. Schiller, J. Gmehling, Ind. Eng. Chem. Res. 30, 2352 (1991)

    Google Scholar 

  23. S. Dahl, M.L. Michelsen, AlChE J. 36, 1829 (1990)

    Google Scholar 

  24. J. Schwartzentruber, H. Renon, Ind. Eng. Chem. Res. 28, 1049 (1989)

    Google Scholar 

  25. O. Kunz, R. Klimeck, W. Wagner, M. Jaeschke, GERG TM15 (2007)

  26. S.H. Huang, M. Radosz, Ind. Eng. Chem. Res. 29, 2284 (1990)

    Google Scholar 

  27. W.G. Chapman, K.E. Gubbins, G. Jackson, M. Radosz, Ind. Eng. Chem. Res. 29, 1709 (1990)

    Google Scholar 

  28. G.M. Kontogeorgis, E.C. Voutsas, I.V. Yakoumis, D.P. Tassios, Ind. Eng. Chem. Res. 35, 4310 (1996)

    Google Scholar 

  29. S.-S. You, K.-P. Yoo, C.S. Lee, Fluid Phase Equilib. 93, 193 (1994)

    Google Scholar 

  30. S.-S. You, K.-P. Yoo, C.S. Lee, Fluid Phase Equilib. 93, 215 (1994)

    Google Scholar 

  31. M. Wertheim, J. Stat. Phys. 35, 19 (1984)

    ADS  Google Scholar 

  32. M. Wertheim, J. Stat. Phys. 35, 35 (1984)

    ADS  Google Scholar 

  33. J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40, 1244 (2001)

    Google Scholar 

  34. J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 41, 5510 (2002)

    Google Scholar 

  35. G.M. Kontogeorgis, G.K. Folas, Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories (Wiley, New York, 2009)

    Google Scholar 

  36. N.I. Diamantonis, I.G. Economou, Energy Fuels 25, 3334 (2011)

    Google Scholar 

  37. S. Aparicio-Martínez, K.R. Hall, Fluid Phase Equilib. 254, 112 (2007)

    Google Scholar 

  38. I. Tsivintzelis, M.J. Beier, J.-D. Grunwaldt, A. Baiker, G.M. Kontogeorgis, Fluid Phase Equilib. 302, 83 (2011)

    Google Scholar 

  39. I.C. Sanchez, R.H. Lacombe, J. Phys. Chem. 80, 2352 (1976)

    Google Scholar 

  40. R.H. Lacombe, I.C. Sanchez, J. Phys. Chem. 80, 2568 (1976)

    Google Scholar 

  41. E.A. Guggenheim, Mixtures: The Theory of the Equilibrium Properties of Some Simple Classes of Mixtures Solutions and Alloys (Clarendon Press, Oxford, 1952)

    Google Scholar 

  42. B. Veytsman, J. Phys. Chem. 94, 8499 (1990)

    Google Scholar 

  43. J.W. Kang, J.H. Lee, K.-P. Yoo, C.S. Lee, Fluid Phase Equilib. 194, 77 (2002)

    Google Scholar 

  44. S.H. Kim, J.W. Kang, C.S. Lee, Fluid Phase Equilib. 417, 187 (2016)

    Google Scholar 

  45. N.A. Smirnova, A.L. Victorov, Fluid Phase Equilib. 34, 235 (1987)

    Google Scholar 

  46. A. Breitholtz, C.S. Lee, K.-P. Yoo, J.S. Lim, J.W. Kang, J. Ind. Eng. Chem. 16, 640 (2010)

    Google Scholar 

  47. N. Xu, J. Dong, Y. Wang, J. Shi, Fluid Phase Equilib. 81, 175 (1992)

    Google Scholar 

  48. F.A. Somait, A.J. Kidnay, J. Chem. Eng. Data 23(4), 301 (1978)

    Google Scholar 

  49. A. Fredenslund, G. Sather, J. Chem. Eng. Data 15, 17 (1970)

    Google Scholar 

  50. A. Fredenslund, J. Mollerup, O. Persson, J. Chem. Eng. Data 17, 440 (1972)

    Google Scholar 

  51. M. Wei, T.S. Brown, A.J. Kidnay, E.D. Sloan, J. Chem. Eng. Data 40, 726 (1995)

    Google Scholar 

  52. A. Chapoy, C. Coquelet, H. Liu, A. Valtz, B. Tohidi, Fluid Phase Equilib. 356, 223 (2013)

    Google Scholar 

  53. J.A. Bierlein, W.B. Kay, Ind. Eng. Chem. 45, 618 (1953)

    Google Scholar 

  54. C. Tsang, W. Street, Chem. Eng. Sci. 36, 993 (1981)

    Google Scholar 

  55. J. Spano, C. Heck, P. Barrick, J. Chem. Eng. Data 13, 168 (1968)

    Google Scholar 

  56. K. Bezanehtak, G. Combes, F. Dehghani, N. Foster, D. Tomasko, J. Chem. Eng. Data 47, 161 (2002)

    Google Scholar 

  57. H. Teng, A. Yamasaki, M.-K. Chun, H. Lee, J. Chem. Thermodyn. 29, 1301 (1997)

    Google Scholar 

  58. A. Valtz, A. Chapoy, C. Coquelet, P. Paricaud, D. Richon, Fluid Phase Equilib. 226, 333 (2004)

    Google Scholar 

  59. M. King, A. Mubarak, J. Kim, T. Bott, J. Supercrit. Fluids 5, 296 (1992)

    Google Scholar 

  60. C.R. Coan, A. King, J. Am. Chem. Soc. 93(8), 1857 (1971)

    Google Scholar 

  61. T. Nakayama, H. Sagara, K. Arai, S. Saito, Fluid Phase Equilib. 38, 109 (1987)

    Google Scholar 

  62. F. Lucile, P. Cézac, F. Contamine, J.-P. Serin, D. Houssin, P. Arpentinier, J. Chem. Eng. Data 57, 784 (2012)

    Google Scholar 

  63. R. Wiebe, V. Gaddy, J. Am. Chem. Soc. 62, 815 (1940)

    Google Scholar 

  64. G.-I. Kaminishi, Y. Arai, S. Saito, S. Maeda, J. Chem. Eng. Jpn. 1, 109 (1968)

    Google Scholar 

  65. E. Sarashina, Y. Arai, S. Sasto, J. Chem. Eng. Jpn. 4, 379 (1971)

    Google Scholar 

  66. C. Coquelet, A. Valtz, F. Dieu, D. Richon, P. Arpentinier, F. Lockwood, Fluid Phase Equilib. 273, 38 (2008)

    Google Scholar 

  67. B. Yücelen, Vapor–liquid equilibria in the nitrogen, carbon dioxide, propane system and the prediction of Henry’s constants and heats of solution from equations of state (1998)

  68. M. Yorizane, S. Yoshimura, H. Masuoka, Y. Miyano, Y. Kakimoto, J. Chem. Eng. Data 30, 174 (1985)

    Google Scholar 

  69. T. Brown, A. Kidnay, E. Sloan, Fluid Phase Equilib. 40, 169 (1988)

    Google Scholar 

  70. T. Brown, V. Niesen, E. Sloan, A. Kidnay, Fluid Phase Equilib. 53, 7 (1989)

    Google Scholar 

  71. T.A. Al-Sahhaf, A.J. Kidnay, E.D. Sloan, Ind. Eng. Chem. Fundam. 22(4), 372 (1983)

    Google Scholar 

  72. T.A. Al-Sahhaf, Fluid Phase Equilib. 55, 159 (1990)

    Google Scholar 

  73. I. Krichevskii, N. Khazanova, L. Lesnevskaya, L.Y. Sandalova, Khim. Promst. (Moscow) 38, 169 (1962)

    Google Scholar 

  74. G. Zenner, L. Dana, in Chemical Engineering Progress Symposium Series, pp. 36–41 (1963)

  75. G. Kaminishi, T. Toriumi, Kogyo Kagaku Zasshi 69, 175 (1966)

    Google Scholar 

  76. Y. Arai, G.-I. Kaminishi, S. Saito, J. Chem. Eng. Jpn. 4, 113 (1971)

    Google Scholar 

  77. W. Weber, S. Zeck, H. Knapp, Fluid Phase Equilib. 18, 253 (1984)

    Google Scholar 

  78. H.G. Donnelly, D.L. Katz, Ind. Eng. Chem. 46, 511 (1954)

    Google Scholar 

  79. J. Davalos, W.R. Anderson, R.E. Phelps, A.J. Kidnay, J. Chem. Eng. Data 21, 81 (1976)

    Google Scholar 

  80. H. Knapp, X. Yang, Z. Zhang, Fluid Phase Equilib. 54, 1 (1990)

    Google Scholar 

  81. L.A. Webster, A.J. Kidnay, J. Chem. Eng. Data 46, 759 (2001)

    Google Scholar 

  82. J. Awan, I. Tsivintzelis, C. Coquelet, G. Kontogeorgis, J. Chem. Eng. Data 57, 896 (2012)

    Google Scholar 

  83. I. Tsivintzelis, G.M. Kontogeorgis, M.L. Michelsen, E.H. Stenby, AlChE J. 56, 2965 (2010)

    Google Scholar 

  84. S.P. Tan, Y. Yao, M. Piri, Ind. Eng. Chem. Res. 52, 10864 (2013)

    Google Scholar 

  85. M. Frenkel, R.D. Chirico, V. Diky, X. Yan, Q. Dong, C. Muzny, J. Chem. Inf. Model. 45, 816 (2005)

    Google Scholar 

  86. V. Devlikamov, L. Semenova, N. Repin, Izv Vyssh Uchebn Zaved. Neft Gaz 8, 42 (1982)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2014R1A5A1009799). This work was also supported by the Technology Innovation Program (10045068, development of flow assurance and organic acid/calcium removal process for the production of offshore opportunity crude) funded by the Ministry of Trade, Industry and Energy (MI, Korea). This work was also supported by the New and Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry and Energy, Republic of Korea (No. 20153030041030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Won Kang.

Additional information

Special Issue: Advances in Thermophysical Properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, B.S., Rho, W.G., You, SS. et al. Evaluation of Thermodynamic Models for Predicting Phase Equilibria of \(\hbox {CO}_{2}\) + Impurity Binary Mixture. Int J Thermophys 39, 44 (2018). https://doi.org/10.1007/s10765-018-2364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2364-5

Keywords

Navigation