Skip to main content
Log in

Thermal Diffusivity of High-Density Polyethylene Samples of Different Crystallinity Evaluated by Indirect Transmission Photoacoustics

  • ICPPP 18
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, thermal diffusivity of crystalline high-density polyethylene samples of various thickness, and prepared using different procedures, was evaluated by transmission gas-microphone frequency photoacoustics. The samples’ composition analysis and their degree of crystallinity were determined from the wide-angle X-ray diffraction, which confirmed that high-density polyethylene samples, obtained by slow and fast cooling, were equivalent in composition but with different degrees of crystallinity. Structural analysis, performed by differential scanning calorimetry, demonstrated that all of the used samples had different levels of crystallinity, depending not only on the preparing procedure, but also on sample thickness. Therefore, in order to evaluate the samples’ thermal diffusivity, it was necessary to modify standard photoacoustic fitting procedures (based on the normalization of photoacoustic amplitude and phase characteristics on two thickness levels) for the interpretation of photoacoustic measurements. The calculated values of thermal diffusivity were in the range of the expected literature values. Besides that, the obtained results indicate the unexpected correlation between the values of thermal diffusivity and thermal conductivity with the degree of crystallinity of the investigated geometrically thin samples. The results indicate the necessity of additional investigation of energy transport in macromolecular systems, as well as the possible employment of the photoacoustic techniques in order to clarify its mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Wunderlich, Thermal Analysis of Polymeric Materials (Springer, Berlin, 2005)

    Google Scholar 

  2. T.C.M. Chung, Macromolecules 46, 6671–6698 (2013)

    Article  ADS  Google Scholar 

  3. A.A. Basfar, J. Mosnáček, T.M. Shukri, M.A. Bahattab, P. Noireaux, A. Courdreuse, J. Appl. Polym. Sci. 107, 642–649 (2008)

    Article  Google Scholar 

  4. S. Galovic, B. Secerov, S. Trifunovic, D. Milicevic, E. Suljovrujic, Radiat. Phys. Chem. 81, 1374–1377 (2012)

    Article  ADS  Google Scholar 

  5. D. Milicevic, M. Micic, G. Stamboliev, A. Leskovac, M. Mitric, E. Suljovrujic, Fibers Polym. 13, 466–470 (2012)

    Article  Google Scholar 

  6. D. Milicevic, S. Trifunovic, M. Popovic, T. Vukasinovic Milic, E. Suljovrujic, Nucl. Instrum. Methods B 260, 603–612 (2007)

    Article  ADS  Google Scholar 

  7. D. Milicevic, M. Micic, E. Suljovrujic, Polym. Bull. 71, 2317–2334 (2014)

    Article  Google Scholar 

  8. Q. Yuan, Y. Yang, J. Chen, V. Ramuni, R.D.K. Misra, K.J. Bertrand, Mater. Sci. Eng. A Struct 527, 6699–6713 (2010)

    Article  Google Scholar 

  9. E. Suljovrujic, M. Micic, D. Milicevic, J. Eng. Fibers Fabr. 8, 131–143 (2013)

    Google Scholar 

  10. S. Kumar, A.K. Panda, R.K. Singh, Resour. Conserv. Recycl. 55, 893–910 (2011)

    Article  Google Scholar 

  11. M. Faizal, A. Bouazza, R.M. Singh, Renew. Sustain. Energy Rev. 57, 16–33 (2016)

    Article  Google Scholar 

  12. X. Zaoli, X. Shen, X. Tang, X. Wang, AIP Adv. 4, 017131 (2014)

    Article  ADS  Google Scholar 

  13. P.B. Allen, Phys. Rev. B 88, 144302 (2013)

    Article  ADS  Google Scholar 

  14. A.M. Mansanares, H. Vargas, F. Galembeck, J. Buijs, D. Bicanic, J. Appl. Phys. 70, 7046–7050 (1991)

    Article  ADS  Google Scholar 

  15. R. Sanchez, J. Rieumont, S. Cardoso, M. Silva, M. Sthel, M. Massunaga, C.N. Gatts, H. Vargas, J. Braz. Chem. Soc. 10, 97–103 (1999)

    Article  Google Scholar 

  16. A.C. Bento, D.T. Dias, L. Olenka, A.N. Medina, M.L. Baesso, Braz. J. Phys. 32, 483–494 (2002)

    Article  ADS  Google Scholar 

  17. L.H. Poley, A.P.L. Siqueira, M.G. da Silva, H. Vargas, Polímeros 14, 8–12 (2004)

    Article  Google Scholar 

  18. B. Bonno, J.L. Laporte, R. Tascon, R.T. D’Leon, Instrum. Sci. Technol. 33, 151–160 (2005)

    Article  Google Scholar 

  19. L.H. Poley, H. Vargas, M.G. da Silva, A.P.L. Siqueira, R. Sanchez, Polímeros 14, 8–12 (2004)

    Article  Google Scholar 

  20. B. Wunderlich, C.M. Cormier, J. Polym. Sci. A 2, 987–988 (1967)

    Article  Google Scholar 

  21. C.G. Vonk, J. Appl. Crystallogr. 6, 148–152 (1973)

    Article  Google Scholar 

  22. V. Jokanovic, Instrumental Methods: Key to Understanding Nanotechnologies and Nanomedicine, (Engineering Academy of Serbia: VINCA Institute for Nuclear Sciences, Belgrade, 2014—in Serbian) (title of the original: Instrumentalne metode ključ za razumevanje nanotehnologija i nanomedicine). ISBN 978-86-7306-123-8

  23. L.F. Perondi, L.C.M. Miranda, J. Appl. Phys. 62, 2955–2959 (1987)

    Article  ADS  Google Scholar 

  24. M.D. Rabasovic, M.G. Nikolic, M.D. Dramicanin, M. Franko, D.D. Markushev, Meas. Sci. Technol. 20, 095902 (2009)

    Article  ADS  Google Scholar 

  25. G. Rousset, F. Lepoutre, L. Bertrand, J. Appl. Phys. 54, 2383 (1983)

    Article  ADS  Google Scholar 

  26. D.M. Todorovic, P.M. Nikolic, Progress in Photothermal and Photoacoustic Science and Technology, vol. 4, ed. by A. Mandelis (SPIE Press Book, 2000), p. 272. ISBN: 9780819435064

  27. D.M. Todorovic, B. Cretin, Y.Q. Song, P. Vairac, J. App. Phys. 107, 023516 (2010)

    Article  ADS  Google Scholar 

  28. D. Markushev, M.D. Rabasovic, M. Nesic, M. Popovic, S. Galovic, Int. J. Thermophys. 33, 2210–2216 (2012)

    Article  ADS  Google Scholar 

  29. M. Nesic, P. Gusavac, M. Popovic, Z. Soskic, S. Galovic, Phys. Scr. T149, 014018 (2012)

    Article  ADS  Google Scholar 

  30. S. Galovic, D. Kostoski, J. Appl. Phys. 93, 3063–3070 (2003)

    Article  ADS  Google Scholar 

  31. S. Galovic, Z. Soskic, M. Popovic, D. Cevizovic, Z. Stojanovic, J. Appl. Phys. 116, 024901 (2014)

    Article  ADS  Google Scholar 

  32. J.A. Balderas-Lopez, A. Mandelis, Rev. Sci. Instrum. 74, 5219 (2003)

    Article  ADS  Google Scholar 

  33. J.A. Balderas-Lopez, Rev. Sci. Instrum. 77, 064902 (2006)

    Article  ADS  Google Scholar 

  34. Z. Soskic, S. Ciric-Kostic, S. Galovic, Int. J. Therm. Sci. 109, 217–230 (2016)

    Article  Google Scholar 

  35. P.C. Hansen, Numer. Algorithms 6, 1–35 (1994)

  36. http://www.engineeringtoolbox.com/pipes-temperature-expansion-coefficients-d_48.html. Acccessed 09 Nov 2017

  37. http://www.maropolymeronline.com/Properties/HDPE%20Prop.asp. Acccessed 09 Nov 2017

  38. D. Cevizovic, S. Galovic, A. Reshetnyak, Z. Ivic, Chin. Phys. B 22, 060501 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors wish to acknowledge the support of Ministry of Education and Science of the Republic of Serbia throughout the research project III-45005, OI-171016 and 172026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nesic.

Additional information

This article is part of the selected papers presented at the 18th International Conference on Photoacoustic and Photothermal Phenomena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesic, M., Popovic, M., Rabasovic, M. et al. Thermal Diffusivity of High-Density Polyethylene Samples of Different Crystallinity Evaluated by Indirect Transmission Photoacoustics. Int J Thermophys 39, 24 (2018). https://doi.org/10.1007/s10765-017-2345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2345-0

Keywords

Navigation