Skip to main content
Log in

Thermal Decomposition Study on CuInSe\(_{2}\) Single Crystals

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal analysis of the chemical vapor transport (CVT)-grown \(\hbox {CuInSe}_{2}\) single crystals was carried out by recording the thermogravimetric, differential thermogravimetric and differential thermal analysis curves. All the three thermo-curves were recorded simultaneously by thermal analyzer in the temperature range of ambient to 1080 K in inert nitrogen atmosphere. The thermo-curves were recorded for four heating rates of 5 K \(\cdot \,\hbox {min}^{-1}\), 10 K \(\cdot \,\hbox {min}^{-1}\), 15 K \(\cdot \,\hbox {min}^{-1}\) and 20 K \(\cdot \,\hbox {min}^{-1}\). The TG curve analysis showed negligible mass loss in the temperature range of ambient to 600 K, stating the sample material to be thermally stable in this temperature range. Above 601 K to the temperature of 1080 K, the sample showed continuous mass loss. The DTG curves showed two peaks in the temperature range of 601 K to 1080 K. The corresponding DTA showed initial minor exothermic nature followed by endothermic nature up to nearly 750 K and above it showed exothermic nature. The initial exothermic nature is due to absorbed water converting to water vapor, whereas the endothermic nature states the absorption of heat by the sample up to nearly 950 K. Above nearly 950 K the exothermic nature is due to the decomposition of sample material. The absorption of heat in the endothermic region is substantiated by corresponding weight loss in TG. The thermal kinetic parameters of the CVT-grown \(\hbox {CuInSe}_{2}\) single crystals were determined employing the non-mechanistic Kissinger relation. The determined kinetic parameters support the observations of the thermo-curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Yao, N.J. Takas, M.L. Schliefert, D.S. Paprocki, P.E.R. Blanchard, H. Gou, A. Mar, C.L. Exstrom, S.A. Darveau, P.F.P. Poudeu, Phys. Rev. B 84, 075203 (2011)

    Article  ADS  Google Scholar 

  2. W. Paszkowicz, R. Minikayev, P. Piszora, D. Trots, M. Knapp, T. Wojciechowski, R. Bacewicz, Appl. Phys. A 116, 767–780 (2014)

    Article  ADS  Google Scholar 

  3. S.N. Mustafaeva, S.M. Asadov, D.T. Guseinov, I. Kasimoglu, Semicond. Phys. Quantum Electron. 19, 201–204 (2016)

    Article  Google Scholar 

  4. L. Djellal, A. Bouguelia, M.K. Hanifi, M. Trari, Sol. Energy Mater. Sol. Cells 92, 594–600 (2008)

    Article  Google Scholar 

  5. K. Liu, H. Liu, J. Li, Y. Xu, Integr. Ferroelectr. 169, 35–41 (2016)

    Article  Google Scholar 

  6. S.H. Chaki, Front. Mater. Sci. China 2, 322–325 (2008)

    Article  ADS  Google Scholar 

  7. S.H. Chaki, K.S. Mahato, M.P. Deshpande, Phys. Scr. 90, 045701–12 (2015)

    Article  ADS  Google Scholar 

  8. H. Matsushita, T. Takizawa, Jpn. J. Appl. Phys. 34, 4699–4705 (1995)

    Article  ADS  Google Scholar 

  9. S.H. Chaki, A. Agarwal, J. Cryst. Growth 308, 176–179 (2007)

    Article  ADS  Google Scholar 

  10. S.M. Chauhan, S.H. Chaki, J.P. Tailor, M.P. Deshpande, in AIP Conference Proceedings, vol 1731 (2016), p. 100008

  11. H.E. Kissinger, Anal. Chem. 29, 1702–1706 (1957)

    Article  Google Scholar 

  12. Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R. Agrawal, H.W. Hillhouse, Nano Lett. 8, 2982–2987 (2008)

    Article  ADS  Google Scholar 

  13. M.J. Tafreshi, M. Fazli, Indian J. Pure Appl. Phys. 46, 646–650 (2008)

    Google Scholar 

  14. H. Neumann, J. Less-Common Met. 155, L13–L17 (1989)

    Article  Google Scholar 

  15. W. Hönle, G. Kuhn, J. Thermal Anal. 31, 589–595 (1986)

    Article  Google Scholar 

  16. S.S. Hajimirsadeghi, M.B. Teimouri, M.R. Nasrabadi, S. Dehghanpour, J. Therm. Anal. Calorim. 98, 463–468 (2009)

    Article  Google Scholar 

  17. S.H. Chaki, J.P. Tailor, M.P. Deshpande, Mater. Sci. Semicond. Process. 27, 577–585 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Two of the authors, SHC and MPD are thankful to the Department of Atomic Energy (DAE), Government of India, Mumbai, for providing the Seiko EXSTAR SII TG/DTA7200 thermal analyzer through financial assistance vide DAE-BRNS Major Research Project Sanction No. 2010/34/34/BRNS/2060 dated December 2010. One of the authors, TJM is thankful to University Grants Commission (UGC), New Delhi, for the award of Maulana Azad National Fellowship (MANF) to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjaysinh M. Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S.M., Chaki, S.H., Deshpande, M.P. et al. Thermal Decomposition Study on CuInSe\(_{2}\) Single Crystals. Int J Thermophys 39, 18 (2018). https://doi.org/10.1007/s10765-017-2341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2341-4

Keywords

Navigation