Improving the Dynamic Emissivity Measurement Above 1000 K by Extending the Spectral Range

Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 12th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science


To improve the dynamic emissivity measurement, which is based on the laser-flash method, an array spectrometer is characterized regarding its spectral radiance responsivity for a spectrally resolved emissivity measurement above \(1000\,\)K in the wavelength range between \(550\,\)nm and \(1100\,\)nm. Influences like dark signals, the nonlinearity of the detector, the size-of-source effect, wavelength calibration and the spectral radiance responsivity of the system are investigated to obtain an uncertainty budget for the spectral radiance and emissivity measurements. Uncertainties for the spectral radiance of lower than a relative \(2\,\%\) are achieved for wavelengths longer than \(550\,\)nm. Finally, the spectral emissivity of a graphite sample was determined in the temperature range between \(1000\,\)K and \(1700\,\)K, and the experimental data show a good repeatability and agreement with literature data.


Emissivity Graphite High temperature Laser flash Spectrometry 


  1. 1.
    A.K. Gaigalas, L. Wang, H.-J. He, P. DeRose, Procedures for wavelength calibration and spectral response correction of CCD array spectrometers. J. Res. NIST 114, 215 (2009)CrossRefGoogle Scholar
  2. 2.
    D.A. Watt, Theory of thermal diffusivity by pulse technique. Br. J. Appl. Phys. 17(2), 231 (1966)ADSCrossRefGoogle Scholar
  3. 3.
    G. Neuer, Spectral and total emissivity measurements of highly emitting materials. Int. J. Thermophys. 16, 257 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    H.W. Yoon, D.W. Allen, R.D. Saunders, Methods to reduce the size-of-source effect in radiometers. Metrologia 42, 89 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Cape, G.W. Lehman, Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity. J. Appl. Phys. 34, 1909 (1963)ADSCrossRefGoogle Scholar
  6. 6.
    M.E. Schaepman, D. Dangel, Solid laboratory calibration of a nonimaging spectroradiometer. Appl. Opt. 39, 3754 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    NIST: Handbook of Basic Atomic Spectroscopic Data. Accessed 29 Aug 2016
  8. 8.
    P. Bloembergen, Analytical representations of the size-of-source effect. Metrologia 46, 534 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    P. Saunders, H. Edgar, On the characterization and correction of the size-of-source effect in radiation thermometers. Metrologia 46, 62 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S.G.R. Salim, N.P. Fox, E. Theocharous, T. Sun, K.T.V. Grattan, Temperature and nonlinearity corrections for a photodiode array spectrometer used in the field. Appl. Opt. 50, 866 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    S. Krenek, Dynamische Emissionsgradmessung im Hochtemperaturbereich. PhD Thesis, Physikalisch-Technische Bundesanstalt (PTB) (2016).
  12. 12.
    S. Krenek, D. Gilbers, K. Anhalt, D.R. Taubert, J. Hollandt, A dynamic method to measure emissivity at high temperatures. Int. J. Thermophys. 36, 1713 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    S. Krenek, K. Anhalt, A. Lindemann, C. Monte, J. Hollandt, J. Hartmann, A study on the feasibility of measuring the emissivity with the laser-flash method. Int. J. Thermophys. 31, 998 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    S. Park, D.H. Lee, Y. Kim, S.N. Park, Uncertainty evaluation for the spectroradiometric measurement of the averaged light-emitting diode intensity. Appl. Opt. 46, 2851 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    V.I. Sapritsky, B.B. Khlevnoy, V.B. Khromchenko, S.A. Ogarev, S.P. Morozova, B.E. Lisiansky, M.L. Samoylov, V.I. Shapoval, K.A. Sudarev, Blackbody sources for the range 100 K to 3500 K for precision measurements in radiometry and radiation thermometry. AIP Conf. Proc. 684, 619 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32, 1679 (1961)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Zong, S.W. Brown, B.C. Johnson, K.R. Lykke, Y. Ohno, Simple spectral stray light correction method for array spectroradiometers. Appl. Opt. 45, 1111 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Physikalisch-Technische BundesanstaltBerlinGermany

Personalised recommendations