Advertisement

A Two-Temperature Photothermal Interaction in a Semiconductor Medium Containing a Cylindrical Hole

  • Ibrahim A. Abbas
  • Aatef Hobiny
Article

Abstract

Photothermoelastic interactions in an infinite semiconductor medium containing a cylindrical hole with two temperatures are studied using mathematical method under the purview of the coupled theory of thermal, plasma and elastic waves. The internal surface of the hole is constrained and the carrier density is photogenerated by bound heat flux with an exponentially decaying pulse. Based on Laplace transform and the eigenvalue approach methodology, the solutions of all variables have been obtained analytically. The numerical computations for silicon-like semiconductor material have been obtained. The results further show that the analytical scheme can overcome mathematical problems to analyze these problems.

Keywords

A semiconducting material Cylindrical hole Eigenvalue approach Laplace transform Two-temperature 

Notes

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. (RG-11-130-38). The authors, therefore, acknowledge with thanks DSR technical and financial support.

References

  1. 1.
    M.E. Gurtin, W.O. Williams, Arch. Ration. Mech. Anal. 26, 83–117 (1967)CrossRefGoogle Scholar
  2. 2.
    P.J. Chen, M.E. Gurtin, W.O. Williams, ZAMP 20, 107–112 (1969)ADSCrossRefGoogle Scholar
  3. 3.
    P.J. Chen, M.E. Gurtin, ZAMP 19, 614–627 (1968)ADSCrossRefGoogle Scholar
  4. 4.
    E. Carrera, A.E. Abouelregal, I.A. Abbas, A.M. Zenkour, J. Therm. Stress. 38, 569–590 (2015)CrossRefGoogle Scholar
  5. 5.
    I.A. Abbas, R. Kumar, L.S. Reen, Can. J. Phys. 92, 1305–1311 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    S. Deswal, K.K. Kalkal, J. Thermodyn. (2013).  https://doi.org/10.1155/2013/754798
  7. 7.
    F.A. McDonald, G.C. Wetsel Jr., J. Appl. Phys. 49, 2313–2322 (1978)ADSCrossRefGoogle Scholar
  8. 8.
    W. Jackson, N.M. Amer, J. Appl. Phys. 51, 3343–2353 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    R. Stearns, G. Kino, Appl. Phys. Lett. 47, 1048–1050 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    D. Todorović, Rev. Sci. Instrum. 74, 578–581 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    D. Todorović, Rev. Sci. Instrum. 74, 582–585 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Song, B. Cretin, D.M. Todorovic, P. Vairac, J. Phys. D Appl. Phys. 41, 155106 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    J. Opsal, A. Rosencwaig, Appl. Phys. Lett. 47, 498–500 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    A. Rosencwaig, J. Opsal, D.L. Willenborg, Appl. Phys. Lett. 43, 166–168 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    I.A. Abbas, Int. J. Comput. Mat. Sci. Eng. 5, 1650016 (2016)CrossRefGoogle Scholar
  16. 16.
    A.D. Hobiny, I.A. Abbas, Mech. Time Depend. Mat. 21, 61–72 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Song, J. Bai, Z. Ren, Acta Mech. 223, 1545–1557 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Mandelis, M. Nestoros, C. Christofides, Opt. Eng. 36, 459–468 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    A.M. Zenkour, A.E. Abouelregal, J. Therm. Sci. Technol. Jpn. 10, JTST0019 (2015)CrossRefGoogle Scholar
  20. 20.
    N.C. Das, A. Lahiri, R.R. Giri, Indian J. Pure Appl. Math. 28, 1573–1594 (1997)MathSciNetGoogle Scholar
  21. 21.
    I.A. Abbas, Comput. Math. Appl. 68, 2036–2056 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    I.A. Abbas, J. Mech. Sci. Technol. 28, 4193–4198 (2014).  https://doi.org/10.1007/s12206-014-0932-6
  23. 23.
    I.A. Abbas, Mech. Based Des. Struct. Mach. 43, 501–513 (2015)CrossRefGoogle Scholar
  24. 24.
    I.A. Abbas, Can. J. Phys. 93, 585–590 (2015).  https://doi.org/10.1139/cjp-2014-0387 ADSCrossRefGoogle Scholar
  25. 25.
    D.Y. Tzou, Macro-to Micro-scale Heat Transfer: The Lagging Behavior (Wiley, Hoboken, 2014)Google Scholar
  26. 26.
    Y. Song, D.M. Todorovic, B. Cretin, P. Vairac, J. Xu, J. Bai, Int. J. Thermophys. 35, 305–319 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceSohag UniversitySohâgEgypt
  2. 2.Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Department of MathematicsKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations