Advertisement

Influence of Chemical Treatment on Thermal Decomposition and Crystallite Size of Coir Fiber

  • R. Manjula
  • N. V. Raju
  • R. P. S. Chakradhar
  • Ekwipoo Kalkornsurapranee
  • Jobish Johns
Article
  • 111 Downloads

Abstract

Coir fibers were treated with sodium hydroxide (NaOH) and glutaraldehyde (GA). The influence of alkali and aldehyde treatment on thermal degradation and crystallinity of coir fiber was studied in detail. Thermogravimetric analysis and X-ray diffraction techniques were mainly used to characterize the coir samples. Activation energy of degradation was calculated from Broido and Horowitz–Metzger equations. NaOH-treated samples showed an increase in thermal stability. Removal of impurities such as waxy and fatty acid residues from the coir fiber by reacting with strong base solution improved the stability of fiber. Crosslinking of cellulose with GA in the fiber enhanced the stability of the material. Scanning electron microscopy was employed to analyze the change in surface morphology upon chemical treatment. Improvement in the properties suggests that NaOH and GA can be effectively used to modify coir fiber with excellent stability.

Keywords

Activation energy Coir fiber Crystallinity Glutaraldehyde Thermal stability 

Notes

Acknowledgements

The authors gratefully acknowledge the management of Global Academy of Technology, and Rajarajeswari College of Engineering, Bangalore, for providing the laboratory facilities and their encouragement.

References

  1. 1.
    M. Poletto, A.J. Zattera, M.M.C. Forte, R.M.C. Santana, Bioresour. Technol. 109, 148 (2012)CrossRefGoogle Scholar
  2. 2.
    K.G.M. Arifuzzaman, A. Md. Shamsul, M. Terano, Indian J. Fibre Text. Res. 37, 20 (2012)Google Scholar
  3. 3.
    S.N. Monteiro, V. Calado, R.J.S. Rodriguez, F.M. Margem, J. Mater. Res. Technol. 1, 117 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Ali, J. Civ. Eng. Constr. Technol. 2, 189 (2011)Google Scholar
  5. 5.
    H. Gu, Mater. Des. 30, 3931 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Poletto, H.L. Oranghi, A.J. Zattera, Materials 7, 6105 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    N. Ezekiel, B.C. Ndazi, C. Nyahumwa, S. Karlsson, Ind. Crops. Prod. 33, 638 (2011)CrossRefGoogle Scholar
  8. 8.
    A.I.S. Brígida, V.M.A. Calado, L.R.B. Gonçalves, M.Z. Coelho, Carbohydr. Polym. 79, 832 (2010)CrossRefGoogle Scholar
  9. 9.
    M.L. Troëdec, A. Rachini, C. Peyratout, S. Rossignol, E. Max, O. Kaftan, A. Smith, J. Colloid Interface Sci. 356, 303 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    E. Abraham, B.L. Deepa, L. Pothen, J. Cintil, S. Thomas, M.J. John, S.S. Narine, Carbohydr. Polym. 92, 1477 (2013)CrossRefGoogle Scholar
  11. 11.
    P.J.H. Franco, A.V. González, Compos. Part B Eng. 36, 597 (2005)CrossRefGoogle Scholar
  12. 12.
    C. Asasutjarit, S. Charoenvai, J. Hirunlabh, J. Khedari, Compos. Part B Eng. 40, 633 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Dixit, P. Verma, Adv. Appl. Sci. Res. 3, 1463 (2012)Google Scholar
  14. 14.
    F.P. Mantia, M.Morreale La, Compos. Part A Appl. Sci. Manuf. 42, 579 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Ali, J. Civ. Eng. Constr. Technol. 3, 80 (2012)Google Scholar
  16. 16.
    Z. Xiao, Y. Xie, H. Militz, C. Mai, Holzforschung 64, 475 (2010)Google Scholar
  17. 17.
    Y. Xie, Z. Xiao, T. Grüneberg, H. Militz, C.A.S. Hill, L. Steuernagel, C. Mai, Compos. Sci. Technol. 70, 2003 (2010)CrossRefGoogle Scholar
  18. 18.
    D.N. Mahato, B.K. Mathur, S. Bhattacherjee, Indian J. Fibre Text. Res. 20, 202 (1995)Google Scholar
  19. 19.
    L. Segal, J.J. Creely, A.E. Martin Jr., C.M. Conrad, Text. Res. J. 29, 786 (1959)CrossRefGoogle Scholar
  20. 20.
    J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102 (1978)CrossRefGoogle Scholar
  21. 21.
    M.C. Popescu, C.M. Popescu, G. Lisa, Y. Sakata, J. Mol. Struct. 988, 65 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    A. Johns, M.S. Aan, J. Johns, M.S. Bhagyashekar, C. Nakason, E. Kalkornsurapranee, Iran. Polym. J. 24, 901 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Kumar, Y.S. Negi, V. Choudhary, N.K. Bhardwaj, J. Mater. Phys. Chem. 2, 1 (2014)Google Scholar
  24. 24.
    H.L. Ornaghi Jr., M. Poletto, A.J. Zattera, S.C. Amico, Cellulose 21, 177 (2014)CrossRefGoogle Scholar
  25. 25.
    D. Chen, D. Lawton, M.R. Thompson, Q. Liu, Carbohydr. Polym. 90, 709 (2012)CrossRefGoogle Scholar
  26. 26.
    M. Poletto, A.J. Zattera, R.M.C. Santana, Bioresour. Technol. 126, 7 (2012)CrossRefGoogle Scholar
  27. 27.
    V. Tserki, P. Matzinos, S. Kokkou, C. Panayiotou, Compos. Part A 36, 965 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • R. Manjula
    • 1
  • N. V. Raju
    • 1
  • R. P. S. Chakradhar
    • 2
  • Ekwipoo Kalkornsurapranee
    • 3
  • Jobish Johns
    • 4
  1. 1.Department of PhysicsGlobal Academy of TechnologyBangalore-98India
  2. 2.Surface Engineering DivisionCSIR-NALBangalore -17India
  3. 3.Department of Materials Science and Technology, Faculty of SciencePrince of Songkla UniversityHat-YaiThailand
  4. 4.Department of PhysicsRajarajeswari College of EngineeringBangalore-74India

Personalised recommendations