Skip to main content
Log in

Influence of Chemical Treatment on Thermal Decomposition and Crystallite Size of Coir Fiber

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Coir fibers were treated with sodium hydroxide (NaOH) and glutaraldehyde (GA). The influence of alkali and aldehyde treatment on thermal degradation and crystallinity of coir fiber was studied in detail. Thermogravimetric analysis and X-ray diffraction techniques were mainly used to characterize the coir samples. Activation energy of degradation was calculated from Broido and Horowitz–Metzger equations. NaOH-treated samples showed an increase in thermal stability. Removal of impurities such as waxy and fatty acid residues from the coir fiber by reacting with strong base solution improved the stability of fiber. Crosslinking of cellulose with GA in the fiber enhanced the stability of the material. Scanning electron microscopy was employed to analyze the change in surface morphology upon chemical treatment. Improvement in the properties suggests that NaOH and GA can be effectively used to modify coir fiber with excellent stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Poletto, A.J. Zattera, M.M.C. Forte, R.M.C. Santana, Bioresour. Technol. 109, 148 (2012)

    Article  Google Scholar 

  2. K.G.M. Arifuzzaman, A. Md. Shamsul, M. Terano, Indian J. Fibre Text. Res. 37, 20 (2012)

  3. S.N. Monteiro, V. Calado, R.J.S. Rodriguez, F.M. Margem, J. Mater. Res. Technol. 1, 117 (2012)

    Article  Google Scholar 

  4. M. Ali, J. Civ. Eng. Constr. Technol. 2, 189 (2011)

    Google Scholar 

  5. H. Gu, Mater. Des. 30, 3931 (2009)

    Article  Google Scholar 

  6. M. Poletto, H.L. Oranghi, A.J. Zattera, Materials 7, 6105 (2014)

    Article  ADS  Google Scholar 

  7. N. Ezekiel, B.C. Ndazi, C. Nyahumwa, S. Karlsson, Ind. Crops. Prod. 33, 638 (2011)

    Article  Google Scholar 

  8. A.I.S. Brígida, V.M.A. Calado, L.R.B. Gonçalves, M.Z. Coelho, Carbohydr. Polym. 79, 832 (2010)

    Article  Google Scholar 

  9. M.L. Troëdec, A. Rachini, C. Peyratout, S. Rossignol, E. Max, O. Kaftan, A. Smith, J. Colloid Interface Sci. 356, 303 (2011)

    Article  ADS  Google Scholar 

  10. E. Abraham, B.L. Deepa, L. Pothen, J. Cintil, S. Thomas, M.J. John, S.S. Narine, Carbohydr. Polym. 92, 1477 (2013)

    Article  Google Scholar 

  11. P.J.H. Franco, A.V. González, Compos. Part B Eng. 36, 597 (2005)

    Article  Google Scholar 

  12. C. Asasutjarit, S. Charoenvai, J. Hirunlabh, J. Khedari, Compos. Part B Eng. 40, 633 (2009)

    Article  Google Scholar 

  13. S. Dixit, P. Verma, Adv. Appl. Sci. Res. 3, 1463 (2012)

    Google Scholar 

  14. F.P. Mantia, M.Morreale La, Compos. Part A Appl. Sci. Manuf. 42, 579 (2011)

    Article  Google Scholar 

  15. M. Ali, J. Civ. Eng. Constr. Technol. 3, 80 (2012)

    Google Scholar 

  16. Z. Xiao, Y. Xie, H. Militz, C. Mai, Holzforschung 64, 475 (2010)

    Google Scholar 

  17. Y. Xie, Z. Xiao, T. Grüneberg, H. Militz, C.A.S. Hill, L. Steuernagel, C. Mai, Compos. Sci. Technol. 70, 2003 (2010)

    Article  Google Scholar 

  18. D.N. Mahato, B.K. Mathur, S. Bhattacherjee, Indian J. Fibre Text. Res. 20, 202 (1995)

    Google Scholar 

  19. L. Segal, J.J. Creely, A.E. Martin Jr., C.M. Conrad, Text. Res. J. 29, 786 (1959)

    Article  Google Scholar 

  20. J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102 (1978)

    Article  Google Scholar 

  21. M.C. Popescu, C.M. Popescu, G. Lisa, Y. Sakata, J. Mol. Struct. 988, 65 (2011)

    Article  ADS  Google Scholar 

  22. A. Johns, M.S. Aan, J. Johns, M.S. Bhagyashekar, C. Nakason, E. Kalkornsurapranee, Iran. Polym. J. 24, 901 (2015)

    Article  Google Scholar 

  23. A. Kumar, Y.S. Negi, V. Choudhary, N.K. Bhardwaj, J. Mater. Phys. Chem. 2, 1 (2014)

    Google Scholar 

  24. H.L. Ornaghi Jr., M. Poletto, A.J. Zattera, S.C. Amico, Cellulose 21, 177 (2014)

    Article  Google Scholar 

  25. D. Chen, D. Lawton, M.R. Thompson, Q. Liu, Carbohydr. Polym. 90, 709 (2012)

    Article  Google Scholar 

  26. M. Poletto, A.J. Zattera, R.M.C. Santana, Bioresour. Technol. 126, 7 (2012)

    Article  Google Scholar 

  27. V. Tserki, P. Matzinos, S. Kokkou, C. Panayiotou, Compos. Part A 36, 965 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the management of Global Academy of Technology, and Rajarajeswari College of Engineering, Bangalore, for providing the laboratory facilities and their encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jobish Johns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjula, R., Raju, N.V., Chakradhar, R.P.S. et al. Influence of Chemical Treatment on Thermal Decomposition and Crystallite Size of Coir Fiber. Int J Thermophys 39, 3 (2018). https://doi.org/10.1007/s10765-017-2324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2324-5

Keywords

Navigation