Solubility Determination and Modeling and Dissolution Thermodynamic Properties of Raspberry Ketone in Binary Solvent Mixtures of Ethanol and Water

  • Min Shu
  • Liang Zhu
  • Yan-fei Wang
  • Jing Yang
  • Liyu Wang
  • Libin Yang
  • Xiaoyu Zhao
  • Wei Du


The solubility and dissolution thermodynamic properties of raspberry ketone in a set of binary solvent mixtures (ethanol + water) with different compositions were experimentally determined by static gravimetrical method in the temperature range of 283.15–313.15 K at 0.10 MPa. The solubility of raspberry ketone in this series of ethanol/water binary solvent mixtures was found to increase with a rise in temperature and the rising mole fraction of ethanol in binary solvent mixtures. The van’t Hoff, modified Apelblat and 3D Jouyban–Acree–van’t Hoff equations were increasingly applied to correlate the solubility in ethanol/water binary solvent mixtures. The former two models could reach better fitting results with the solubility data, while the 3D model can be comprehensively used to estimate the solubility data in all the ratios of ethanol and water in binary solvent mixtures at random temperature. Furthermore, the changes of dissolution thermodynamic properties of raspberry ketone in experimental ethanol/water solvent mixtures were obtained by van’t Hoff equation. For all the above experiments, these dissolution processes of raspberry ketone in experimental ethanol/water binary solvent mixtures were estimated to be endothermic and enthalpy-driven.


3D Jouyban–Acree–van’t Hoff model Binary solvent mixtures Dissolution thermodynamic properties Gravimetric method Raspberry ketone Solubility 



The financial support of the Tianjin Research Program of Application Foundation and Advanced Technology (Grant No. 14JCZDJC40900) and the National Natural Science Foundation of China (Grant No. 21506162) are sincerely acknowledged.


  1. 1.
    M. Larsen, L. Poll, Z. Lebensm. Unters. Forsch. 191, 129–131 (1990)CrossRefGoogle Scholar
  2. 2.
    L. Bredsdorff, E.B. Wedebye, N.G. Nikolov, T.H. Møller, K. Pilegaard, Regul. Toxicol. Lett. 229S, S171 (2014)CrossRefGoogle Scholar
  3. 3.
    C. Fuganti, G. Zucchi, J. Mol. Catal. B Enzym. 4, 289–293 (1998)CrossRefGoogle Scholar
  4. 4.
    Y. Ogawa, M. Akamatsu, Y. Hotta, A. Hosoda, H. Tamura, B. Med, Chem. Lett. 20, 2111–2114 (2010)CrossRefGoogle Scholar
  5. 5.
    N. Harada, K. Okajima, N. Narimatsu, H. Kurihara, N. Nakagata, Growth Horm. IGF Res. 18, 335–344 (2008)CrossRefGoogle Scholar
  6. 6.
    W. Hoelderich, V. Ritzerfeld, Appl. Catal. A Gen. 504, 654–663 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Matsuda, K. Mori, M. Tomioka, N. Kariyasu, T. Fukami, K. Kurihara, K. Tochigi, K. Tomono, Fluid Phase Equilib. 406, 116–123 (2015)CrossRefGoogle Scholar
  8. 8.
    B. Kosjek, W. Stampfer, R.V. Deursen, K. Faber, W. Kroutil, Tetrahedron 59, 9517–9521 (2003)CrossRefGoogle Scholar
  9. 9.
    M. Lakshmy, B.M. Chandrasekhar, B.S. Jai Prakash, Y.S. Bhat, Clay Miner. 50, 573–581 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Beekwilder, I.M. van der Meer, O. Sibbesen, M. Broekgaarden, I. Qvist, J.D. Mikkelsen, R.D. Hall, Biotechnol. J. 2, 1270–1279 (2007)CrossRefGoogle Scholar
  11. 11.
    L. Bredsdorff, E.B. Wedebye, N.G. Nikolov, T.H. Møller, K. Pilegaard, Regul. Toxicol. Pharm. 73, 196–200 (2015)CrossRefGoogle Scholar
  12. 12.
    H.R. Rafiee, F. Frouzesh, J. Chem. Thermodyn. 102, 95–104 (2016)CrossRefGoogle Scholar
  13. 13.
    L.N. Zelenina, T.P. Chusova, A.V. Isakov, J. Chem. Thermodyn. 102, 89–94 (2016)CrossRefGoogle Scholar
  14. 14.
    M.Y. Tao, H. Sun, Z. Wang, P.L. Cui, J.K. Wang, Fluid Phase Equilib. 352, 14–21 (2013)CrossRefGoogle Scholar
  15. 15.
    G. Wang, Y.L. Wang, Y.G. Ma, H.X. Hao, Q.H. Luan, H.H. Wang, J. Chem. Thermodyn. 77, 144–150 (2014)CrossRefGoogle Scholar
  16. 16.
    A. Mehrdad, A.H. Miri, Fluid Phase Equilib. 425, 51–56 (2016)CrossRefGoogle Scholar
  17. 17.
    K.F. Zhao, P. Yang, S.C. Du, K.L. Li, X.N. Li, Z.F. Li, Y.M. Liu, L.L. Lin, B.H. Hou, J.B. Gong, J. Chem. Thermodyn. 102, 276–286 (2016)CrossRefGoogle Scholar
  18. 18.
    Y.Y. Yang, P. Yang, S.C. Du, K.L. Li, K.F. Zhao, S.J. Xu, B.H. Hou, J.B. Gong, J. Chem. Thermodyn. 103, 432–445 (2016)CrossRefGoogle Scholar
  19. 19.
    F.X. Zou, W. Zhuang, J.L. Wu, J.W. Zhou, Q.Y. Liu, Y. Chen, J.J. Xie, C.J. Zhu, T. Guo, H.J. Ying, J. Chem. Thermodyn. 77, 14–22 (2014)CrossRefGoogle Scholar
  20. 20.
    L.Y. Wang, X.C. Li, L. Zhu, Z.L. Sha, Y.F. Wang, L.B. Yang, J. Mol. Liq. 208, 211–218 (2015)CrossRefGoogle Scholar
  21. 21.
    L.P. Xiao, Y.L. Wang, J.X. Yang, F.H. Yuan, C. Jiang, B.H. Hou, C. Xie, J. Chem. Thermodyn. 102, 199–210 (2016)CrossRefGoogle Scholar
  22. 22.
    P. Yang, S.C. Du, Y.J. Qin, K.F. Zhao, K.L. Li, B.H. Hou, J.B. Gong, J. Chem. Thermodyn. 101, 84–91 (2016)CrossRefGoogle Scholar
  23. 23.
    W.E. Acree, M.Y. Horton, J. Chem. Thermodyn. 104, 61–66 (2017)CrossRefGoogle Scholar
  24. 24.
    K. Koeduka, B. Watanabe, S. Suzuki, J. Hiratake, J. Mano, K. Yazaki, Biochem. Biophys. Res. Commun. 412, 104–108 (2011)CrossRefGoogle Scholar
  25. 25.
    H.W. Shi, Y. Xie, C.B. Du, Y. Cong, J. Wang, H.K. Zhao, J. Chem. Thermodyn. 102, 79–88 (2016)CrossRefGoogle Scholar
  26. 26.
    K. Nam, E.S. Ha, J.S. Kim, D.H. Kuk, D.H. Ha, M.S. Kim, C.W. Cho, S.J. Hwang, J. Chem. Thermodyn. 104, 45–49 (2017)CrossRefGoogle Scholar
  27. 27.
    R.R. Pawar, C.S. Aher, J.D. Pagar, S.L. Nikam, M. Hasan, J. Chem. Eng. Data 57, 3563–3572 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Min Shu
    • 1
  • Liang Zhu
    • 1
  • Yan-fei Wang
    • 1
  • Jing Yang
    • 1
  • Liyu Wang
    • 1
  • Libin Yang
    • 1
  • Xiaoyu Zhao
    • 1
  • Wei Du
    • 1
  1. 1.Tianjin Key Laboratory of Marine Resources and Chemistry, College of Material Science and Chemical EngineeringTianjin University of Science and TechnologyTianjinPeople’s Republic of China

Personalised recommendations