Progress Report on NMIJ Acoustic Gas Thermometry at the Triple Point of Water

  • Tetsuro Misawa
  • Januarius Widiatmo
  • Yuya Kano
  • Takao Sasagawa
  • Kazuaki Yamazawa
TEMPMEKO 2016
  • 69 Downloads
Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 12th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science

Abstract

Herein, progress in the development of an acoustic gas thermometry (AGT) system at the National Metrology Institute of Japan is reported. This AGT system is an initial low-cost version that uses a 1-l quasi-spherical resonator (QSR) made of oxygen-free copper. The system was tested by measuring the speed of sound in argon at the temperature of triple point of water. Measurements were conducted at ten different pressures, ranging from 60 kPa to 420 kPa. The ideal gas limit of the squared speed of sound was obtained through extrapolation, and a preliminary calculation of the Boltzmann constant, which was 12 ppm below the CODATA2014 value, was made. Large inconsistencies among microwave and acoustic modes were observed, which are dominant sources of uncertainty in speed of sound measurements. The system will be improved by replacing the present QSR with another one that is more precisely fabricated.

Keywords

Acoustic gas thermometry Acoustic resonance Boltzmann constant Microwave resonance Primary thermometry 

Notes

Acknowledgements

We would like to thank Keith Gillis and Michael R. Moldover of NIST for useful advices and constructive discussion on acoustic analysis and apparatus design. We also thank Laurent Pitre of LNE-INM and Inseok Yang of KRISS for collaborating on argon gas analysis and discussion. Laurent Pitre also shared his abundant experience on microwave and acoustic analysis. Last but not least, we appreciate the encouragement that our colleagues Atsushi Onae, Kenichi Fujii, Nobu-Hisa Kaneko, Chiharu Urano and Tohru Nakano have given us to drive this project.

References

  1. 1.
    I.M. Mills, P.J. Mohr, T.J. Quinn, B.N. Taylor, E.R. Williams, 2006 Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005). Metrologia 43, 227 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    M.R. Moldover, J.P.M. Trusler, T.J. Edwards, J.B. Mehl, R.S. Davis, J. Res. Natl. Bur. Stand. 93, 85 (1988)CrossRefGoogle Scholar
  3. 3.
    L. Pitre, L. Risegari, F. Sparasci, M.D. Plimmer, M.E. Himbert, P.A. Giuliano Albo, Metrologia 52, S263 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    M. de Podesta, R.J. Underwood, G. Sutton, P. Morantz, P. Harris, D.F. Mark, F.M. Stuart, G. Vargha, G. Machin, Metrologia 50, 354 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    M. de Podesta, I. Yang, D.F. Mark, R. Underwood, G. Sutton, G. Machin, Metrologia 52, S353 (2015)CrossRefGoogle Scholar
  6. 6.
    R.M. Gavioso, D.M. Ripa, P.P.M. Steur, C. Gaiser, D. Truong, C. Guianvarc’h, P. Tarizzo, F.M. Stuart, R. Dematteis, Metrologia 52, S274 (2015)CrossRefGoogle Scholar
  7. 7.
    L. Pitre, F. Sparasci, D. Truong, A. Guillou, L. Risegari, M.E. Himbert, Int. J. Thermophys. 32, 1825 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    H. Lin, X.J. Feng, K.A. Gillis, M.R. Moldover, J.T. Zhang, J.P. Sun, Y.Y. Duan, Metrologia 50, 417–432 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    J. Qu, S.P. Benz, A. Pollarolo, H. Rogalla, W.L. Tew, R. White, K. Zhou, Metrologia 52, S242 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    E. Fasci, M. Domenica De Vizia, A. Merlone, L. Moretti, A. Castrillo, L. Gianfrani, Metrologia 52, S233 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    G.-W. Truong, D. Stuart, J.D. Anstie, E.F. May, T.M. Stace, A.N. Luiten, Metrologia 52, S324 (2015)CrossRefGoogle Scholar
  12. 12.
    F.J. Pérez-Sanz, J.J. Segovia, M.C. Martín, M.A. Villamañán, D. del Campo, C. García, Metrologia 52, S257 (2015)CrossRefGoogle Scholar
  13. 13.
    C. Gaiser, B. Fellmuth, N. Haft, A. Kuhn, B. Thiele-Krivoi, T. Zandt, J. Fischer, O. Jusko, W. Sabuga, Metrologia 54, 280 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Kano, Y. Kayukawa, Y. Fujita, M. Hashimoto, M. Fukushima, Speed of sound measurement for R1123 in gas phase to derive the ideal gas heat capacity, in Proceedings of the 8th Asian Conference on Refrigeration and Air Conditioning, 106, Taipei (2016)Google Scholar
  15. 15.
    Y. Kano, Speed of sound and relative permittivity measurement of 1,1,1,3,3-pentafluoropropane in gas phase, in Proceedings of the 1st Pacific Rim Thermal Engineering Conference, 14559, Hawaii’s Big Island (2016)Google Scholar
  16. 16.
    Y. Kano, Simultaneous measurements of speed-of-sound and dielectric constant for gas samples, in Proceedings of the 10th Asian Thermophysical Properties Conference, B04, Jeju (2013)Google Scholar
  17. 17.
    Y. Kano, Y. Kayukawa, Speed-of-sound measurement of R245fa in the gas phase by using a cylindrical acoustic resonator, in Proceedings of the 4th IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants, Paper No. TP-081, Delft (2013)Google Scholar
  18. 18.
    R.E. Bedford, G. Bonnier, H. Maas, F. Pavese, Metrologia 33, 133–154 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    T. Nakano, O. Tamura, H. Sakurai, Int. J. Thermophys. 29, 112–118 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    L. Pitre, M.R. Moldover, W.L. Tew, Metrologia 43, 142 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    M.R. Moldover, R.M. Gavioso, J.B. Mehl, L. Pitre, M. de Podesta, Z.T. Zhang, Metrologia 51, R1–R19 (2014)CrossRefGoogle Scholar
  22. 22.
    J.B. Mehl, Metrologia 46, 554–559 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    E.F. May, L. Pitre, J.B. Mehl, M.R. Moldover, J.W. Schmidt, Rev. Sci. Instrum. 75, 3307 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    N.J. Simon, E.S. Drexler, R.P. Reed, NIST Monograph 177 (1992)Google Scholar
  25. 25.
    K.A. Gillis, H. Lin, M.R. Moldover, J. R. NIST 114, 263 (2009)CrossRefGoogle Scholar
  26. 26.
    G. Benedetto, R.M. Gavioso, R. Spagnolo, P. Marcarino, A. Merlone, Metrologia 41, 74 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    P.J. Mohr, D.B. Newell, B.N. Taylor, CODATA recommended values of the fundamental constants: 2014. Rev. Mod. Phys. 88, 035009 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    R.M. Gavioso, G. Benedetto, P.A. Giuliano Albo, A. Merlone, A. Balsamo, G.E. D’Errico, R. Spagnolo, Int. J. Thermophys. 28, 1775–1788 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    I. Yang, L. Pitre, M.R. Moldover, J. Zhang, X. Feng, J.S. Kim, Metrologia 52, S394 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.National Metrology Institute of JapanNational Institute of Advanced Industrial Science and Technology (NMIJ, AIST)TsukubaJapan
  2. 2.Laboratory for Materials and StructuresTokyo Institute of TechnologyYokohamaJapan
  3. 3.National Institute of Technology and EvaluationTokyoJapan

Personalised recommendations