Skip to main content
Log in

Measurement of the Calorific Value of Methane by Calorimetry Using Metal Burner

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

With the diversification of natural gas origins and variations in natural gas compositions, the accurate measurement of the calorific value of natural gas has become a very important issue for the gas industry and standardization. Korea Research Institute of Standards and Science is developing a standard gas calorimeter based on the isoperibolic technique. This work describes the details of the experimental apparatus and procedures of the developed gas calorimeter along with the measurement results for the superior calorific value of methane at \(25\,^{\circ }\hbox {C}\). A burner made of stainless steel was used for the first time in this type of calorimeter, and the potential application of a metal burner to a gas calorimeter was investigated. Eight measurements were performed, and the deviation from international standards was 0.16 %. The deviation was mainly caused by the measurement of the burned methane gas. The measurement results show that the metal burner may potentially be employed in a gas calorimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Lim, J. Jun, B. Lee, J. Therm. Anal. Calorim. 109, 487–494 (2012). doi:10.1007/s10973-011-1688-1

    Article  Google Scholar 

  2. ISO 6976, Natural Gas: Calculation of calorific values, density, relative density and Wobbe indices from composition, International Standard ISO 6976, 2016-08

  3. F.D. Rossini, J. Res. Natl. Bur. Stand. 6, 1–35 (1931). doi:10.6028/jres.006.001

    Article  Google Scholar 

  4. F.D. Rossini, J. Res. Natl. Bur. Stand. 6, 37–49 (1931). doi:10.6028/jres.006.002

    Article  Google Scholar 

  5. F.D. Rossini, J. Res. Natl. Bur. Stand. 7, 329–330 (1931). doi:10.6028/jres.007.017

    Article  Google Scholar 

  6. F.D. Rossini, J. Res. Natl. Bur. Stand. 8, 119–139 (1932). doi:10.6028/jres.008.012

    Article  Google Scholar 

  7. F.D. Rossini, J. Res. Natl. Bur. Stand. 12, 735–750 (1934). doi:10.6028/jres.012.059

    Article  Google Scholar 

  8. D.A. Pittam, G. Pilcher, J. Chem. Soc. Faraday. Trans. I 68, 2224–2229 (1972). doi:10.1039/F19726802224

    Article  Google Scholar 

  9. A. Dale, C. Lythall, J. Aucott, C. Sayer, Thermochim. Acta 382, 47–54 (2002). doi:10.1016/S0040-6031(01)00735-3

    Article  Google Scholar 

  10. F. Haloua, B. Hay, J.-R. Filtz, J. Therm. Anal. Calorim. 97, 673–678 (2009). doi:10.1007/s10973-008-9701-z

    Article  Google Scholar 

  11. F. Haloua, J. Ponsard, G. Lartigue, B. Hay, C. Villermaux, E. Foulon, M. Zaréa, Int. J. Therm. Sci. 55, 40–47 (2012). doi:10.1016/j.ijthermalsci.2011.12.014

    Article  Google Scholar 

  12. F. Haloua, E. Foulon, A. Allard, B. Hay, J.R. Filtz, Metrologia 52, 741–755 (2015). doi:10.1088/0026-1394/52/6/741

    Article  ADS  Google Scholar 

  13. P. Schley, M. Beck, M. Uhrig, S.M. Sarge, J. Rauch, F. Haloua, J.-R. Filtz, B. Hay, M. Yakoubi, J. Escande, A. Benito, P.L. Cremonesi, Int. J. Thermophys. 31, 665–679 (2010). doi:10.1007/s10765-010-0714-z

    Article  ADS  Google Scholar 

  14. P. Wenz, P. Ulbig, S.M. Sarge, J. Therm. Anal. Calorim. 71, 137–145 (2003). doi:10.1023/A:1022270318257

    Article  Google Scholar 

  15. Y.I. Alexandrov, Thermochim. Acta 382, 55–64 (2002). doi:10.1016/S0040-6031(01)00736-5

    Article  Google Scholar 

  16. S.M. Sarge, G.W.H. Höhne, W. Hemminger, Calorimetry (WILEY-VCH, New York, 2014), pp. 73–79

    Google Scholar 

  17. F. Haloua, B. Hay, E. Foulon, J. Therm. Anal. Calorim. 111, 985–994 (2013). doi:10.1007/s10973-012-2342-2

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Research Institute of Standards and Science under the project ‘Establishment of National Physical Measurement Standards and Improvements of Calibration/Measurement Capability’ Grant 17011046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joohyun Lee.

Additional information

Special Issue: Advances in Thermophysical Properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Kwon, S., Joung, W. et al. Measurement of the Calorific Value of Methane by Calorimetry Using Metal Burner. Int J Thermophys 38, 171 (2017). https://doi.org/10.1007/s10765-017-2306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2306-7

Keywords

Navigation