Skip to main content
Log in

Laser Fluence Recognition Using Computationally Intelligent Pulsed Photoacoustics Within the Trace Gases Analysis

  • ICPPP 18
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper, the possibilities of computational intelligence applications for trace gas monitoring are discussed. For this, pulsed infrared photoacoustics is used to investigate \(\hbox {SF}_{6}\)–Ar mixtures in a multiphoton regime, assisted by artificial neural networks. Feedforward multilayer perceptron networks are applied in order to recognize both the spatial characteristics of the laser beam and the values of laser fluence \(\Phi \) from the given photoacoustic signal and prevent changes. Neural networks are trained in an offline batch training regime to simultaneously estimate four parameters from theoretical or experimental photoacoustic signals: the laser beam spatial profile R(r), vibrational-to-translational relaxation time \(\tau _{V-T} \), distance from the laser beam to the absorption molecules in the photoacoustic cell r* and laser fluence \(\Phi \). The results presented in this paper show that neural networks can estimate an unknown laser beam spatial profile and the parameters of photoacoustic signals in real time and with high precision. Real-time operation, high accuracy and the possibility of application for higher intensities of radiation for a wide range of laser fluencies are factors that classify the computational intelligence approach as efficient and powerful for the in situ measurement of atmospheric pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V. Zeninari, R. Vallon, C. Risser, B. Parvitte, J. Thermophys. 37, 7 (2016)

    Article  ADS  Google Scholar 

  2. X. Mao, X. Zhou, Z. Gong, Q. Yu, Sens. Actuators B Chem. 232, 251 (2016)

    Article  Google Scholar 

  3. V. Spagnolo, P. Patimisco, A. Sampaolo, M. Giglio, L. Dong, G. Scamarcio, F. K. Tittel, in Proceedings of SPIE 9899, Optical Sensing and Detection IV, 98990S, 29 Apr 2016. doi:10.1117/12.2228701

  4. D.D. Markushev, J. Jovanović-Kurepa, M. Terzić, J. Quant. Spectrosc. Radiat. Transf. 76, 85 (2003)

    Article  ADS  Google Scholar 

  5. J. Gajević, M. Stević, J. Nikolić, M. Rabasović, D. Markushev, Facta Universitatis 4, 57 (2006)

    Google Scholar 

  6. M. Terzić, D.D. Markushev, J. Jovanović-Kurepa, Rev. Sci. Instrum. 74, 322 (2003)

    Article  ADS  Google Scholar 

  7. J.D. Nikolić, M.D. Rabasović, D.D. Markushev, J. Jovanović-Kurepa, Opt. Mater. 30, 1193 (2008)

    Article  ADS  Google Scholar 

  8. D.D. Markusev, J. Jovanovic-Kurepa, J. Slivka, M. Terzic, J. Quant. Spectrosc. Radiat. Transf. 61, 825 (1999)

    Article  ADS  Google Scholar 

  9. M. Terzić, J. Jovanović-Kurepa, D.D. Markušev, J. Phys. B At. Mol. Opt. Phys. 32, 1193 (1999)

    Article  ADS  Google Scholar 

  10. M. Lukić, Ž. Ćojbašić, M. Rabasović, D. Markushev, Meas. Sci. Technol. 25, 125203 (2014)

  11. M.D. Rabasović, D.D. Markushev, J. Jovanović-Kurepa, Meas. Sci. Technol. 17, 1826 (2006)

    Article  ADS  Google Scholar 

  12. K.M. Beck, R.J. Gordon, J. Chem. Phys. 87, 5681 (1987)

    Article  ADS  Google Scholar 

  13. K.M. Beck, R.J. Gordon, J. Chem. Phys. 89, 5560 (1988)

    Article  ADS  Google Scholar 

  14. M. Lukić, Ž. Ćojbašić, M. Rabasović, D. Markushev, D. Todorović, Int. J. Thermophys. 34, 1466 (2013)

  15. M. Lukić, Ž. Ćojbašić, M. Rabasović, D. Markushev, D. Todorović, Int. J. Thermophys. 34, 1795 (2013)

  16. M. Lukić, Ž. Ćojbašić, M. Rabasović, D. Markushev, D. Todorović, Facta Universitatis Ser. Phys. Chem. Technol. 10, 1 (2012)

  17. M.D. Rabasović, J. Nikolić, D.D. Markushev, Appl. Phys. B 88, 309 (2007)

  18. L. Liu, J. Rong, L. Huang, K. Lu, X. Zhong, in 5th IEEE International Symposium on Computational Intelligence and Design (ISCID), 28–29 Oct 2012, Hangzhou, China, pp. 2515–2518 (2012)

  19. M.D. Rabasović, J.D. Nikolić, D.D. Markushev, Meas. Sci. Technol. 17, 2938 (2006)

    Article  ADS  Google Scholar 

  20. J. Jovanovic-Kurepa, D.D. Markusev, M. Terzic, Chem. Phys. 211, 347 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministry of Education, Science and Technological Development of Republic of Serbia under the Grants ON171016 and TR35016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lukić.

Additional information

This article is part of the selected papers presented at the 18th International Conference on Photoacoustic and Photothermal Phenomena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukić, M., Ćojbašić, Ž., Rabasović, M.D. et al. Laser Fluence Recognition Using Computationally Intelligent Pulsed Photoacoustics Within the Trace Gases Analysis. Int J Thermophys 38, 165 (2017). https://doi.org/10.1007/s10765-017-2296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2296-5

Keywords

Navigation