Skip to main content
Log in

Thermal Conductivity Measurement of Liquids by Using a Suspended Microheater

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper, the traditional \(3\omega \) method is modified in order to measure the thermal conductivity of a droplet of liquid. The \(3\omega \) sensor is microfabricated using bulk silicon etching on a silicon wafer to form a microheater on a suspended bridge structure. The Si substrate of over 400 \(\upmu \hbox {m}\) thickness beneath the microheater is etched away so that the sample liquid can fill the gap created between the heater and the bottom boundary of the sensor. The frequency of the sinusoidal heating pulses that are generated from the heater is controlled such that the thermal penetration depth is much smaller than the thickness of the liquid layer. The temperature oscillation of the sample fluid is measured at the thin-film heater to calculate the thermal conductivity of the surrounding fluid. The thermal conductivity and measured values of the de-ionized water and ethanol show a good agreement with the theoretical values at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990)

    Article  ADS  Google Scholar 

  2. F. Chen, J. Shulman, Y. Xue, C. Chu, G.S. Nolas, Rev. Sci. Instrum. 75, 4578 (2004)

    Article  ADS  Google Scholar 

  3. S.-M. Lee, Rev. Sci. Instrum. 80, 024901 (2009)

    Article  ADS  Google Scholar 

  4. I. Moon, Y.H. Jeong, S. Kwun, Rev. Sci. Instrum. 67, 29 (1996)

    Article  ADS  Google Scholar 

  5. D.-W. Oh, A. Jain, J.K. Eaton, K.E. Goodson, J.S. Lee, Int. J. Heat Fluid Flow 29, 1456 (2008)

    Article  Google Scholar 

  6. B.K. Park, N. Yi, J. Park, D. Kim, Rev. Sci. Instrum. 83, 106102 (2012)

    Article  ADS  Google Scholar 

  7. S. Roy-Panzer, T. Kodama, S. Lingamneni, M.A. Panzer, M. Asheghi, K.E. Goodson, Rev. Sci. Instrum. 86, 024901 (2015)

    Article  ADS  Google Scholar 

  8. Y. Nagasaka, A. Nagashima, J. Phys. E Sci. Instrum. 14, 1435 (1981)

    Article  ADS  Google Scholar 

  9. N. Araki, M. Matsuura, A. Makino, T. Hirata, Y. Kato, Int. J. Thermophys. 9, 1071 (1988)

    Article  ADS  Google Scholar 

  10. A. Jacquot, F. Vollmer, B. Bayer, M. Jaegle, D. Ebling, H. Böttner, J. Electron. Mater. 39, 1621 (2010)

    Article  ADS  Google Scholar 

  11. U.G. Jonsson, O. Andersson, Meas. Sci. Technol. 9, 1873 (1998)

    Article  ADS  Google Scholar 

  12. D.-W. Oh, Ph.D. Thesis, School of Mechanical and Aerospace Engineering, Seoul National University (2008)

Download references

Acknowledgements

This study was supported by research fund from Chosun University (2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Wook Oh.

Additional information

Special issue: Advances in Thermophysical Properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, DW. Thermal Conductivity Measurement of Liquids by Using a Suspended Microheater. Int J Thermophys 38, 146 (2017). https://doi.org/10.1007/s10765-017-2278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2278-7

Keywords

Navigation