Performance of Different Light Sources for the Absolute Calibration of Radiation Thermometers

  • M. J. MartínEmail author
  • J. M. Mantilla
  • D. del Campo
  • M. L. Hernanz
  • A. Pons
  • J. Campos
Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science


The evolving mise en pratique for the definition of the kelvin (MeP-K) [1, 2] will, in its forthcoming edition, encourage the realization and dissemination of the thermodynamic temperature either directly (primary thermometry) or indirectly (relative primary thermometry) via fixed points with assigned reference thermodynamic temperatures. In the last years, the Centro Español de Metrología (CEM), in collaboration with the Instituto de Óptica of Consejo Superior de Investigaciones Científicas (IO-CSIC), has developed several setups for absolute calibration of standard radiation thermometers using the radiance method to allow CEM the direct dissemination of the thermodynamic temperature and the assignment of the thermodynamic temperatures to several fixed points. Different calibration facilities based on a monochromator and/or a laser and an integrating sphere have been developed to calibrate CEM’s standard radiation thermometers (KE-LP2 and KE-LP4) and filter radiometer (FIRA2). This system is based on the one described in [3] placed in IO-CSIC. Different light sources have been tried and tested for measuring absolute spectral radiance responsivity: a Xe-Hg 500 W lamp, a supercontinuum laser NKT SuperK-EXR20 and a diode laser emitting at 6473 nm with a typical maximum power of 120 mW. Their advantages and disadvantages have been studied such as sensitivity to interferences generated by the laser inside the filter, flux stability generated by the radiant sources and so forth. This paper describes the setups used, the uncertainty budgets and the results obtained for the absolute temperatures of Cu, Co-C, Pt-C and Re-C fixed points, measured with the three thermometers with central wavelengths around 650 nm.


Absolute radiometry Radiance method Radiometer Standard radiation thermometer Thermodynamic temperature Uncertainty 


  1. 1.
    D.C. Ripple, R. Davis, B. Fellmuth, J. Fischer, G. Machin et al., Int. J. Thermophys. 31, 1795–1808 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    B. Fellmuth et al., Phil. Trans. R. Soc. A 374, 20150037 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Mantilla, M.L. Hernanz, J. Campos, M.J. Martin, A. Pons, D. del Campo, Int. J. Thermophys. 35, 493–503 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    E.R. Woolliams et al., Phil. Trans. R. Soc. A 374, 20150044 (2016)ADSCrossRefGoogle Scholar
  5. 5.
  6. 6.
    J.M. Mantilla, M.J. Martin, M.L. Hernanz, A. Pons, J. Campos, D. del Campo, Proceedings NEWRAD’14, (Helsinki, Finland 2014), pp. 265–266Google Scholar
  7. 7.
    J. M. Mantilla, Ph.D. Thesis. U. Valladolid (2015)Google Scholar
  8. 8.
    M. Sadli et al., Phil. Trans. R. Soc. A 374, 20150043 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Centro Español de MetrologíaTres CantosSpain
  2. 2.Consejo Superior de Investigaciones CientíficasInstituto de ÓpticaMadridSpain

Personalised recommendations