Skip to main content
Log in

NRC Microwave Refractive Index Gas Thermometry Implementation Between 24.5 K and 84 K

  • TEMPMEKO 2016
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The implementation of microwave refractive index gas thermometry at the National Research Council between 24.5 K and 84 K is reported. A new gas-handling system for accurate control and measurement of experimental gas pressure has been constructed, and primary thermometry measurements have been taken using a quasi-spherical copper resonator and helium gas at temperatures corresponding to three defining fixed points of the International Temperature Scale of 1990 (ITS-90). These measurements indicate differences between the thermodynamic temperature T and ITS-90 temperature \(T_{90}\) of \(\left( T - T_{90} \right) = -0.60 \pm 0.56\) mK at \(T_{90} = 24.5561\) K, \(\left( T - T_{90} \right) = -2.0 \pm 1.3\) mK at \(T_{90} = 54.3584\) K, and \(\left( T - T_{90} \right) = -4.0 \pm 2.9\) mK at \(T_{90} = 83.8058\) K. The present results at \(T_{90} = 24.5561\) K and \(T_{90} = 83.8058\) K agree with previously reported measurements from other primary thermometry techniques of acoustic gas thermometry and dielectric constant gas thermometry, and the result at \(T_{90} = 54.3584\) K provides new information in a temperature region where there is a gap in other recent data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Preston-Thomas, Metrologia 27, 3 (1990). doi:10.1088/0026-1394/27/1/002

    Article  ADS  Google Scholar 

  2. H. Preston-Thomas, Metrologia 27, 107 (1990). doi:10.1088/0026-1394/27/2/010

    Article  ADS  Google Scholar 

  3. J. Fischer, M. de Podesta, K.D. Hill, M. Moldover, L. Pitre, R. Rusby, P. Steur, O. Tamura, R. White, L. Wolber, Int. J. Thermophys. 32, 12 (2011). doi:10.1007/s10765-011-0922-1

    Article  ADS  Google Scholar 

  4. R.M. Gavioso, D.M. Ripa, P.P.M. Steur, C. Gaiser, T. Zandt, B. Fellmuth, M. de Podesta, R. Underwood, G. Sutton, L. Pitre, F. Sparasci, L. Risegari, L. Gianfrani, A. Castrillo, G. Machin, Philos. Trans. R. Soc. A 374, 20150046 (2016). doi:10.1098/rsta.2015.0046

    Article  ADS  Google Scholar 

  5. L. Pitre, M.R. Moldover, W.L. Tew, Metrologia 43, 142 (2006). doi:10.1088/0026-1394/43/1/020

    Article  ADS  Google Scholar 

  6. M.R. Moldover, R.M. Gavioso, J.B. Mehl, L. Pitre, M. de Podesta, J.T. Zhang, Metrologia 51, R1 (2014). doi:10.1088/0026-1394/51/1/R1

    Article  Google Scholar 

  7. R. Underwood, M. de Podesta, G. Sutton, L. Stanger, R. Rusby, P. Harris, P. Morantz, G. Machin, Philos. Trans. R. Soc. A 374, 20150048 (2016). doi:10.1098/rsta.2015.0048

    Article  ADS  Google Scholar 

  8. C. Gaiser, T. Zandt, B. Fellmuth, Metrologia 52, S217 (2015). doi:10.1088/0026-1394/52/5/S217

    Article  ADS  Google Scholar 

  9. C. Gaiser, B. Fellmuth, N. Haft, Metrologia 54, 141 (2017). doi:10.1088/1681-7575/aa5389

    Article  ADS  Google Scholar 

  10. A.R. Colclough, Metrologia 10, 73 (1974). doi:10.1088/0026-1394/10/2/006

    Article  ADS  Google Scholar 

  11. R.L. Rusby, Inst. Phys. Conf. Ser. Eur. Conf. Temp. Meas. 26, 44 (1975)

    Google Scholar 

  12. E.F. May, L. Pitre, J.B. Mehl, M.R. Moldover, J.W. Schmidt, Rev. Sci. Instrum. 75, 3307 (2004). doi:10.1063/1.1791831

    Article  ADS  Google Scholar 

  13. J.W. Schmidt, R.M. Gavioso, E.F. May, M.R. Moldover, Phys. Rev. Lett. 98, 254504 (2007). doi:10.1103/PhysRevLett.98.254504

    Article  ADS  Google Scholar 

  14. P.M.C. Rourke, K.D. Hill, Int. J. Thermophys. 36, 205 (2015). doi:10.1007/s10765-014-1728-8

    Article  ADS  Google Scholar 

  15. B. Gao, L. Pitre, E.C. Luo, M.D. Plimmer, P. Lin, J.T. Zhang, X.J. Feng, Y.Y. Chen, F. Sparasci, Measurement 103, 258 (2017). doi:10.1016/j.measurement.2017.02.039

    Article  Google Scholar 

  16. M.R. Moldover, J. Res. Natl. Inst. Stand. Technol. 103, 167 (1998)

    Article  Google Scholar 

  17. A.G. Steele, The International Seminar on Low Temperature Thermometry and Dynamic Temperature Measurement, ed. by A. Szmyrka-Grzebyk (Wroclaw, 1997), pp L48–L53

  18. P.M.C. Rourke, Metrologia 53, L1 (2016). doi:10.1088/0026-1394/53/2/L1

    Article  ADS  Google Scholar 

  19. T. Tomaru, T. Suzuki, T. Haruyama, T. Shintomi, A. Yamamoto, T. Koyama, R. Li, Cryogenics 44, 309 (2004). doi:10.1016/j.cryogenics.2004.02.003

    Article  ADS  Google Scholar 

  20. G. Ventura, L. Risegari, The Art of Cryogenics (Elsevier, Oxford, 2008). [ISBN:978-0-08-044479-6]

    Google Scholar 

  21. SAES MC1-902 specifications, document S110-472_H, DCN 4624. http://www.saespuregas.com (2016)

  22. I. Yang, L. Pitre, M.R. Moldover, J. Zhang, X. Feng, J.S. Kim, Metrologia 52, S394 (2015). doi:10.1088/0026-1394/52/5/S394

    Article  ADS  Google Scholar 

  23. K.D. Hill, M. Gotoh, Metrologia 33, 307 (1996). doi:10.1088/0026-1394/33/4/4

    Article  ADS  Google Scholar 

  24. K.D. Hill, A.G. Steele, Metrologia 42, 278 (2005). doi:10.1088/0026-1394/42/4/013

    Article  ADS  Google Scholar 

  25. Supplementary Information for the International Temperature Scale of 1990, Sèvres, Bureau International de Poids et Mesures, 1997 re-printing. http://www.bipm.org/utils/common/pdf/ITS-90/ITS-90-Supplementary-Info-1997.zip; ISBN:92-822-2111-3 (1990)

  26. Guide to the Realization of the ITS-90: chapter 4. Interpolating Constant-Volume Gas Thermometry, Sèvres, Bureau International de Poids et Mesures, revised 19 March 2015. http://www.bipm.org/utils/common/pdf/ITS-90/Guide-ITS-90-GasThermometry-2015.pdf (2015)

  27. N.J. Simon, E.S. Drexler, R.P. Reed, Properties of Copper and Copper Alloys at Cryogenic Temperatures (NIST Monograph 177, National Institute of Standards and Technology, Boulder, CO 1992)

  28. NIST Cryogenic Materials Properties Database, OFHC Copper (UNS C10100/C10200) entry, revised 02/03/2010. http://cryogenics.nist.gov/MPropsMAY/OFHC%20Copper/OFHC_Copper_rev1.htm (2010)

  29. B. Podobedov, Phys. Rev. ST Accel. Beams 12, 044401 (2009). doi:10.1103/PhysRevSTAB.12.044401

    Article  ADS  Google Scholar 

  30. J.G. Hust, A.B. Lankford, Natl. Bur. Stand. Intern. Rep. NBSIR 84, 3007 (1984)

    Google Scholar 

  31. M. Puchalski, K. Piszczatowski, J. Komasa, B. Jeziorski, K. Szalewicz, Phys. Rev. A 93, 032515 (2016). doi:10.1103/PhysRevA.93.032515

    Article  ADS  Google Scholar 

  32. A. Rizzo, C. Hättig, B. Fernández, H. Koch, J. Chem. Phys. 117, 2609 (2002). doi:10.1063/1.1491402

    Article  ADS  Google Scholar 

  33. R. Moszynski, T.G.A. Heijmen, A. van der Avoird, Chem. Phys. Lett. 247, 440 (1995). doi:10.1016/S0009-2614(95)01271-0

    Article  ADS  Google Scholar 

  34. D.F. Heller, W.M. Gelbart, Chem. Phys. Lett. 27, 359 (1974). doi:10.1016/0009-2614(74)90241-3

    Article  ADS  Google Scholar 

  35. E.C. Kerr, R.H. Sherman, J. Low Temp. Phys. 3, 451 (1970). doi:10.1007/BF00628215

    Article  ADS  Google Scholar 

  36. S. Kirouac, T.K. Bose, J. Chem. Phys. 64, 1580 (1976). doi:10.1063/1.432383

    Article  ADS  Google Scholar 

  37. M. Lallemand, D. Vidal, J. Chem. Phys. 66, 4776 (1977). doi:10.1063/1.433839

    Article  ADS  Google Scholar 

  38. M.P. White, D. Gugan, Metrologia 29, 37 (1992). doi:10.1088/0026-1394/29/1/006

    Article  ADS  Google Scholar 

  39. L.W. Bruch, F. Weinhold, J. Chem. Phys. 113, 8667 (2000). doi:10.1063/1.1318766

    Article  ADS  Google Scholar 

  40. P.J. Mohr, D.B. Newell, B.N. Taylor, Rev. Mod. Phys. 88, 035009 (2016). doi:10.1103/RevModPhys.88.035009

    Article  ADS  Google Scholar 

  41. W. Cencek, M. Przybytek, J. Komasa, J.B. Mehl, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 136, 224303 (2012). doi:10.1063/1.4712218

    Article  ADS  Google Scholar 

  42. G. Garberoglio, M.R. Moldover, A.H. Harvey, J. Res. Natl. Inst. Stand. Technol. 116, 729 (2011)

    Article  Google Scholar 

  43. K.R.S. Shaul, A.J. Schultz, D.A. Kofke, J. Chem. Phys. 137, 184101 (2012). doi:10.1063/1.4764857

    Article  ADS  Google Scholar 

  44. G. Łach, B. Jeziorski, K. Szalewicz, Phys. Rev. Lett. 92, 233001 (2004). doi:10.1103/PhysRevLett.92.233001

    Article  ADS  Google Scholar 

  45. W. Cencek, J. Komasa, K. Szalewicz, J. Chem. Phys. 135, 014301 (2011). doi:10.1063/1.3603968

    Article  ADS  Google Scholar 

  46. W.C. Overton, J. Gaffney, Phys. Rev. 98, 969 (1955). doi:10.1103/PhysRev.98.969

    Article  ADS  Google Scholar 

  47. H.M. Ledbetter, E.R. Naimon, J. Phys. Chem. Ref. Data 3, 897 (1974). doi:10.1063/1.3253150

    Article  ADS  Google Scholar 

  48. J.R. Frederick, Thesis, University of Michigan (1947)

  49. H.M. Ledbetter, Phys. Status Solidi A 66, 477 (1981). doi:10.1002/pssa.2210660209

    Article  ADS  Google Scholar 

  50. C. Gaiser, B. Fellmuth, Phys. Status Solidi B 253, 1549 (2016). doi:10.1002/pssb.201552717

    Article  ADS  Google Scholar 

  51. A.H. Harvey, E.W. Lemmon, Int. J. Thermophys. 26, 31 (2005). doi:10.1007/s10765-005-2351-5

    Article  ADS  Google Scholar 

  52. R. Cuccaro, R.M. Gavioso, G. Benedetto, D. Madonna Ripa, V. Fernicola, C. Guianvarc’h, Int. J. Thermophys. 33, 1352 (2012). doi:10.1007/s10765-011-1007-x

    Article  ADS  Google Scholar 

  53. R.E. Honig, H.O. Hook, RCA Rev. 21, 360 (1960)

    Google Scholar 

  54. C. Gaiser, B. Fellmuth, EPL 90, 63002 (2010). doi:10.1209/0295-5075/90/63002

    Article  ADS  Google Scholar 

  55. A.G. Steele, B. Fellmuth, D.I. Head, Y. Hermier, K.H. Kang, P.P.M. Steur, W.L. Tew, Metrologia 39, 551 (2002). doi:10.1088/0026-1394/39/6/6

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the National Institute of Standards and Technology (NIST) for the loan of the copper resonator used in this study; T.A. Quance and D.W. Woods for technical assistance with the gas-handling system and pressure balance; I. Yang for mass spectrometer gas analysis; and L. Pitre, M. de Podesta, M.R. Moldover, R.M. Gavioso, C. Gaiser, J.W. Schmidt, K.D. Hill, A.D.W. Todd and S.N. Dedyulin for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. C. Rourke.

Additional information

Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rourke, P.M.C. NRC Microwave Refractive Index Gas Thermometry Implementation Between 24.5 K and 84 K. Int J Thermophys 38, 107 (2017). https://doi.org/10.1007/s10765-017-2239-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2239-1

Keywords

Navigation