Advertisement

Absolute Radiation Thermometry in the NIR

  • L. Bünger
  • R. D. Taubert
  • B. Gutschwager
  • K. Anhalt
  • S. Briaudeau
  • M. Sadli
Article
  • 255 Downloads

Abstract

A near infrared (NIR) radiation thermometer (RT) for temperature measurements in the range from 773 K up to 1235 K was characterized and calibrated in terms of the “Mise en Pratique for the definition of the Kelvin” (MeP-K) by measuring its absolute spectral radiance responsivity. Using Planck’s law of thermal radiation allows the direct measurement of the thermodynamic temperature independently of any ITS-90 fixed-point. To determine the absolute spectral radiance responsivity of the radiation thermometer in the NIR spectral region, an existing PTB monochromator-based calibration setup was upgraded with a supercontinuum laser system (0.45 \(\upmu \hbox {m}\) to 2.4 \(\upmu \hbox {m}\)) resulting in a significantly improved signal-to-noise ratio. The RT was characterized with respect to its nonlinearity, size-of-source effect, distance effect, and the consistency of its individual temperature measuring ranges. To further improve the calibration setup, a new tool for the aperture alignment and distance measurement was developed. Furthermore, the diffraction correction as well as the impedance correction of the current-to-voltage converter is considered. The calibration scheme and the corresponding uncertainty budget of the absolute spectral responsivity are presented. A relative standard uncertainty of 0.1 % \((k=1)\) for the absolute spectral radiance responsivity was achieved. The absolute radiometric calibration was validated at four temperature values with respect to the ITS-90 via a variable temperature heatpipe blackbody (773 K ...1235 K) and at a gold fixed-point blackbody radiator (1337.33 K).

Keywords

Absolute spectral radiance responsivity Mise en pratique Primary thermometry Radiation thermometer Supercontinuum laser 

List of symbols

G

Geometric factor

ITS-90

International temperature scale of 1990

IUC

Current-to-voltage converter

LABB

Large-area black body (PTB double-heatpipe blackbody)

MeP-K

Mise en pratique for the definition of the Kelvin

LP5

Linear pyrometer 5

NL

Nonlinearity

PRT

Platinum resistance thermometer

RT

Radiation thermometer

SSE

Size-of-source effect

\(\alpha \)

Horizontal angle of the tilted reference detector

\(\phi _0\)

Radiant flux

\(\varepsilon \)

Emissivity of an object

\(\varepsilon _\mathrm{{A2}}\)

Transfer detector component of diffraction correction

\(\varepsilon _\mathrm{{A1}}\)

Source component of diffraction correction

\(\varepsilon _\mathrm{{A1+A2}}\)

Factor of the diffraction correction

\(A_\mathrm{{olg}}\)

Open-loop-gain of the operation amplifier (IUC)

\(c_1\)

First radiation constant

\(c_2\)

Second radiation constant

\(C_{\text {bandwidth effect}}\)

Uncertainty component of the bandwidth effect

\(C_{\text{ range }}\)

Range matching factor of the measurement ranges of the RT

\(d_x\)

Blackened aperture with a diameter of x

\(d_0\)

Distance between two apertures

\(d_{\text{ dg1 }}\)

Relative distance change measured by precision dial gauge 1

\(d_{\text{ dg2 }}\)

Relative distance change measured by precision dial gauge 2

\(d_{\text{ offset }}\)

Uncertainty component of the distance measurement (caliper)

\(d_{\text{ SL }}\)

Distance measured by caliper

\(f_{\text{ SSE }}\)

Correction factor for different source diameters

\(f_{\text{ IUC }}\)

Impedance correction factor

\(I_{\text{ ref }}\)

Photocurrent of the transfer detector

\(I_{\text{ ref,ds }}\)

Dark signal of the transfer detector

\(I_{\text{ RT }}\)

Photocurrent of the radiation thermometer

\(I_{\text{ RT,ds }}\)

Dark signal of the radiation thermometer

\(P_{\text{ total }}\)

Electrical power

R1

First measurement range of the radiation thermometer

R2

Second measurement range of the radiation thermometer

\(R_{\text{ IU }}\)

Feedback resistor of current-to-voltage converter

\(R_{\text{ ref. } \text{ detector }}\)

Shunt resistance of transfer detector

\(r_1\)

Radius of a aperture located at the integrating sphere

\(r_2\)

Radius of a aperture located at the transfer detector

\(s_{\text{ ref }}^\phi \)

Absolute spectral power responsivity

\(s_{\text{ RT }}^L\)

Absolute spectral radiance responsivity

\(s_{\text{ ref }}^E\)

Absolute spectral irradiance responsivity

\(T_{\text{90 }}\)

Temperature according to the ITS-90

\(T_{\text{ rad }}\)

Thermodynamic temperature

\(U_{\text{ ref. } \text{ det. }}\)

Voltage of the amplified and converted photocurrent of the transfer detector

\(U_{\text{ ref. } \text{ det.,ds }}\)

Dark signal of the amplified and converted photocurrent of the transfer detector

Notes

Acknowledgements

This work was funded by the European Association of National Metrology (EURAMET) in the framework of the European Metrology Research Programme (EMRP) SIB010 NOTED. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. The authors wish to thank P. Meindl for calibrating the transfer detector, E. Kosubek for calibrating the precision apertures, and M. Becker for the ITS-90 calibration at the German standard for radiation thermometry (773 K  to  1235 K).

References

  1. 1.
    H. Preston-Thomas, Metrologia 27, 3 (1990). http://www.bipm.org/utils/common/pdf/its-90/ITS-90.pdf
  2. 2.
    J. Fischer, M. de Podesta, K. Hill, M. Moldover, L. Pitre, R. Rusby, P. Steur, O. Tamura, R. White, L. Wolber, Int. J. Thermophys. 32, 12 (2011). doi: 10.1007/s10765-011-0922-1 ADSCrossRefGoogle Scholar
  3. 3.
    J. Hartmann, K. Anhalt, R. Taubert, J. Hollandt, Int. J. Thermophys. 32, 1707 (2011). doi: 10.1007/s10765-011-1018-7 ADSCrossRefGoogle Scholar
  4. 4.
    G. Machin, P. Bloembergen, K. Anhalt, J. Hartmann, M. Sadli, P. Saunders, E. Woolliams, Y. Yamada, H. Yoon, Int. J. Thermophys. 31, 1779 (2010). doi: 10.1007/s10765-010-0834-5 ADSCrossRefGoogle Scholar
  5. 5.
    CCT-WG5, Mise en pratique of the definition of the kelvin (2006). http://www.bipm.org/utils/en/pdf/MeP_K.pdf
  6. 6.
    M. Stock, J. Fischer, R. Friedrich, H.J. Jung, R. Thornagel, G. Ulm, B. Wende, Metrologia 30, 439 (1993). doi: 10.1088/0026-1394/30/4/041 ADSCrossRefGoogle Scholar
  7. 7.
    D.R. Taubert, R. Friedrich, J. Hartmann, J. Hollandt, Metrologia 40, S35 (2003). doi: 10.1088/0026-1394/40/1/309 ADSCrossRefGoogle Scholar
  8. 8.
    N. Noulkow, R. Taubert, P. Meindl, J. Hollandt, Int. J. Thermophys. 30, 131 (2009). doi: 10.1007/s10765-008-0458-1 ADSCrossRefGoogle Scholar
  9. 9.
    T. Keawprasert, K. Anhalt, D. Taubert, J. Hartmann, Int. J. Thermophys. 32, 1697 (2011). doi: 10.1007/s10765-011-1031-x ADSCrossRefGoogle Scholar
  10. 10.
    M. Schuster, S. Nevas, A. Sperling, S. Völker, Appl. Opt. 51, 1950 (2012). doi: 10.1364/AO.51.001950 ADSCrossRefGoogle Scholar
  11. 11.
    L. Bünger, K. Anhalt, R. Taubert, U. Krüger, F. Schmidt, Int. J. Thermophys. 36, 1 (2015). doi: 10.1007/s10765-015-1915-2 CrossRefGoogle Scholar
  12. 12.
    K. Anhalt, J. Hartmann, D. Lowe, G. Machin, M. Sadli, Y. Yamada, Metrologia 43, S78 (2006). doi: 10.1088/0026-1394/43/2/S16 ADSCrossRefGoogle Scholar
  13. 13.
    Y. Yamada, K. Anhalt, M. Battuello, P. Bloembergen, B. Khlevnoy, G. Machin, M. Matveyev, M. Sadli, A. Todd, T. Wang, Int. J. Thermophys. (2015). doi: 10.1007/s10765-015-1860-0
  14. 14.
    H.E. Bennett, Appl. Opt. 5, 1265 (1966). doi: 10.1364/AO.5.001265 ADSCrossRefGoogle Scholar
  15. 15.
    J. Janesick, Scientific Charge-Coupled Devices. Press Monographs (Society of Photo Optical, 2001). doi: 10.1117/12.7974139
  16. 16.
    C. Sanders, J. Res. Nbs 76A, 437 (1972). doi: 10.6028/jres.076A.039 CrossRefGoogle Scholar
  17. 17.
    J. Fischer, L. Fu, Appl. Opt. 32, 4187 (1993). doi: 10.1364/AO.32.004187 ADSCrossRefGoogle Scholar
  18. 18.
    H.J. Jung, Metrologia 15, 173 (1979). doi: 10.1088/0026-1394/15/4/002 ADSCrossRefGoogle Scholar
  19. 19.
    P. Saunders, D.R. White, Int. J. Thermophys. 28, 2098 (2007). doi: 10.1007/s10765-007-0244-5 ADSCrossRefGoogle Scholar
  20. 20.
    P. Bloembergen, Metrologia 46, 534 (2009). doi: 10.1088/0026-1394/46/5/018 ADSCrossRefGoogle Scholar
  21. 21.
    P. Saunders, Int. J. Thermophys. 32, 1633 (2011). doi: 10.1007/s10765-011-0988-9 ADSCrossRefGoogle Scholar
  22. 22.
    M. Stock, J. Fischer, R. Friedrich, H.J. Jung, B. Wende, Metrologia 32, 441 (1995). doi: 10.1088/0026-1394/32/6/7 ADSCrossRefGoogle Scholar
  23. 23.
    E. Schreiber, H.J. Menz, LINEARPYROMETER LP5 Calibration and Test Report Instrument No. 80–51BL (KE Technologie GmbH, Stuttgart, 2012)Google Scholar
  24. 24.
    K. Anhalt, G. Machin, Philos. Trans. R. Soc. A 374, 20150041 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    N. Noulkow, R.D. Taubert, P. Meindl, J. Hollandt, Int. J. Thermophys. 30, 131 (2009). doi: 10.1007/s10765-008-0458-1 ADSCrossRefGoogle Scholar
  26. 26.
    I.C.M. Littler, E.G. Atkinson, P.J. Manson, M. Ballico, E. Kosubek, D. Taubert, J. Hollandt, Meas. Sci. Technol. 26, 125201 (2015). doi: 10.1088/0957-0233/26/12/125201 ADSCrossRefGoogle Scholar
  27. 27.
    A. Lassila, P. Toivanen, E. Ikonen, Meas. Sci. Technol. 8, 973 (1997). doi: 10.1088/0957-0233/8/9/003 ADSCrossRefGoogle Scholar
  28. 28.
    E. Ikonen, P. Toivanen, A. Lassila, Metrologia 35, 369 (1998). doi: 10.1088/0026-1394/35/4/25 ADSCrossRefGoogle Scholar
  29. 29.
    J. Hartmann, J. Fischer, J. Seidel, Metrologia 37, 637 (2000). doi: 10.1088/0026-1394/37/5/67 ADSCrossRefGoogle Scholar
  30. 30.
    J. Hartmann, Meas. Sci. Technol. 12, 1678 (2001). doi: 10.1088/0026-1394/35/4/25 ADSCrossRefGoogle Scholar
  31. 31.
    W.R. Blevin, Metrologia 6, 39 (1970). doi: 10.1088/0026-1394/6/2/001 ADSCrossRefGoogle Scholar
  32. 32.
    W.H. Steel, M. De, J.A. Bell, J. Opt. Soc. Am. 62, 1099 (1972). doi: 10.1364/JOSA.62.001099 ADSCrossRefGoogle Scholar
  33. 33.
    U. Tietze, C. Schenk, Halbleiter-Schaltungstechnik (Springer, Berlin, 2002)MATHGoogle Scholar
  34. 34.
    H. Vahldiek, Strom/Spannungs-Wandler verarbeitet geringe Signalströme. Elektronik: Analogtechnik (1983)Google Scholar
  35. 35.
    L.P. Boivin, Appl. Opt. 41, 1929 (2002). doi: 10.1364/AO.41.001929 ADSCrossRefGoogle Scholar
  36. 36.
    S. Eichstädt, F. Schmähling, K. Wübbeler, G. Anhalt, L. Bünger, U. Krüger, C. Elster, Metrologia 50, 107 (2013). doi: 10.1088/0026-1394/50/2/107 ADSCrossRefGoogle Scholar
  37. 37.
    E.R. Woolliams, R. Baribeau, A. Bialek, M.G. Cox, Metrologia 48, 164 (2011). doi: 10.1088/0026-1394/48/3/010 ADSCrossRefGoogle Scholar
  38. 38.
    J. Hollandt, R. Friedrich, B. Gutschwager, D. Taubert, J. Hartmann, High Temp.-High Press 35/36, 379–415 (2003). doi: 10.1068/htjr127 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • L. Bünger
    • 1
  • R. D. Taubert
    • 1
  • B. Gutschwager
    • 1
  • K. Anhalt
    • 1
  • S. Briaudeau
    • 2
  • M. Sadli
    • 2
  1. 1.Physikalisch-Technische Bundesanstalt (PTB)BerlinGermany
  2. 2.Laboratoire Commun de Métrologie LNE-CnamLa Plaine Saint-DenisFrance

Personalised recommendations