Skip to main content
Log in

Estimating the Kinematic Viscosity of Petroleum Fractions

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Kinematic viscosity correlation has been developed for liquid petroleum fractions at 37.78\(\,^{\circ }\hbox {C}\) and \(98.89\,^{\circ }\hbox {C}\) (100 and \(210^{\circ }\hbox {F})\) standard temperatures using a large variety of experimental data. The only required inputs are the specific gravity and the average boiling point temperature. The accuracy of the correlation was compared with several other correlations available in the literature. The proposed correlations proved to be more accurate in predicting the viscosity at 37.78\(\,^{\circ }\hbox {C}\) and \(98.89\,^{\circ }\hbox {C}\) with average absolute deviations of 0.39 and \(0.72\hbox { mm}^{2}/\hbox {s}\), respectively. Another objective was to develop a relation for the variation of viscosity with temperature to predict the viscosity of petroleum fraction at a certain temperature from the knowledge of the viscosity for the same liquid at two other temperatures. The newly developed correlation represents a wide array of temperatures from 20 \(^{\circ }\hbox {C}\) to 150 \(^{\circ }\hbox {C}\) and viscosities from 0.14\(\hbox { mm}^{2}/\hbox {s}\) to 343.64\(\hbox { mm}^{2}/\hbox {s}\). The results have been validated with experimental data consisting of 9558 data points, yielding an overall deviation of \(0.248\hbox { mm}^{2}/\hbox {s}\) and \(\hbox {R}^{2}\) of 0.998. In addition, new formulas were developed to interconvert the viscosity of petroleum fractions from one unit of measure to another based on finding the best fit for a set of experimental data from the literature with \(R^{2}\) as high as 1.0 for many cases. Detailed analysis showed good agreement between the predicted values and the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.R. Riazi, K.A. Mahdi, M. Alqallaf, J. Chem. Eng. 50, 1 (2005)

    Google Scholar 

  2. R.C. Reid, J.M. Prausnitz, T.K. Sherwood, The Properties of Liquids and Gases, 4th edn. (McGraw-Hill, New York, 1977)

    Google Scholar 

  3. R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Liquids and Gases, 5th edn (McGraw-Hill, New York, 1987), p. 9.1

  4. A.K. Mehrotra, W.D. Monnery, W.Y. Svrcek, Fluid Phase Equilib. 117, 344 (1996)

    Article  Google Scholar 

  5. J.F. Ely, H.J.M. Hanley, Ind. Eng. Chem. Fundam. 20, 323 (1981)

    Article  Google Scholar 

  6. M.E. Baltatu, Ind. Eng. Chem. Process Des. 21, 192 (1982)

    Article  Google Scholar 

  7. M.B. Amin, R.N. Maddox, Hydrocarb. Process 59, 131 (1980)

    Google Scholar 

  8. S.E. Johnson, W.Y. Svrcek, A.K. Mehrotra, Ind. Eng. Chem. Res. 26, 2290 (1987)

    Article  Google Scholar 

  9. K.S. Pedersen, A. Fredenslund, P.L. Christensen, P. Thomassen, Chem. Eng. Sci. 39, 1011 (1984)

    Article  Google Scholar 

  10. K.S. Pedersen, A. Fredenslund, Chem. Eng. Sci. 42, 182 (1987)

    Article  Google Scholar 

  11. A.S. Teja, P. Rice, Ind. Eng. Chem. Fundam. 20, 77 (1981)

    Article  Google Scholar 

  12. A.S. Teja, P.A. Thurner, Chem. Eng. Commun. 49, 69–79 (1986)

    Article  Google Scholar 

  13. k Aasberg-Petersen, K. Knudsen, A. Fredenslund, Fluid Phase Equilib. 70, 293 (1991)

    Article  Google Scholar 

  14. H.M. Moharam, M.A. Fahim, Ind. Eng. Chem. Res. 34, 4140 (1905)

    Article  Google Scholar 

  15. A. Aboul-Seoud, H.M. Moharam, Chem. Eng. J. 72, 253 (1999)

    Article  Google Scholar 

  16. E.N. da C. Andrade, Phil. Mag. 17, 698 (1934)

  17. H. Vogel, Physikalische Zeitschrift 22, 645–646 (1921)

    Google Scholar 

  18. S.S. Beg, M.B. Amin, I. Hussain, Chem. Eng. J. 38, 123 (1988)

    Article  Google Scholar 

  19. W. Fang, Q. Lei, Fluid Phase Equilib. 166, 125 (1999)

    Article  Google Scholar 

  20. H. Orbey, S.I. Sandler, Can. J. Chem. Eng. 71, 437–446 (1993)

    Article  Google Scholar 

  21. ASTM Annual Book of ASTM Standards, Part 23, (ASTM, Philadelphia, 1981)

  22. C. Walther, Erdöl Teer 7, 382 (1931)

    Google Scholar 

  23. A.K. Mehrotra, Ind. Eng. Chem. Res. 29, 1574–1578 (1990)

    Article  Google Scholar 

  24. A.K. Mehrotra, Chem. Eng. Res. Des. 73, 87–90 (1995)

    Google Scholar 

  25. W.A. Watson, E.F. Nelson, G.B. Murphy, Ind. Eng. Chem. 27, 1460 (1935)

    Article  Google Scholar 

  26. American Petroleum Institute. API Technical Data Book—Petroleum Refining (New York, 1978)

  27. M.M. Abbott, T.G. Kaufmann, L. Domash, Can. J. Chem. Eng. 49, 379 (1971)

    Article  Google Scholar 

  28. C.H. Twu, Ind. Eng. Chem. Process Des. Dev. 24, 1287 (1985)

    Article  Google Scholar 

  29. H.M. Moharam, R.A. AI-Mehaideb, M.A. Fahim, Fuel 74, 1776 (1995)

    Article  Google Scholar 

  30. T.E.A. Daubert. API Technical Data Book, 6th edn (American Petroleum Institute (API), Washington, 1997)

  31. S.I. Abu-Eishah, Int. J. Thermophys. 20, 1425 (1999)

    Article  Google Scholar 

  32. W.R. Gambill, Chem. Eng., 66, 123 (1959)

  33. Oil and Gas Journal Data Book. Edition, (PennWell, Tulsa, 2000)

  34. Exxon Mobil. Crude Oils by Region, Exxon Mobil, http://www.exxonmobil.com/crudeoil/about_crudes_alphabet.aspx. Accessed on December 25, (2015)

  35. D. G. Hyams, CurveExpert Professional 2.3.0, http://www.curveexpert.net/download/. Accessed December 25, (2015)

  36. Cole-Parmer Fluid Handling and Analysis, http://www.coleparmer.com/TechLibraryArticle/84#anchor0. Accessed December 25, (2015)

  37. J.H. Gary, G.E. Handwerk, M.J. Kaiser, Petroleum Refining: Technology and Economics, 5th edn (CRC Press, Boca Raton, 2007), p. 26

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tareq A. Albahri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (xls 1077 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlMulla, H.A., Albahri, T.A. Estimating the Kinematic Viscosity of Petroleum Fractions. Int J Thermophys 38, 58 (2017). https://doi.org/10.1007/s10765-017-2195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2195-9

Keywords

Navigation