Assessment of the Nucleus-to-Cytoplasmic Ratio in MCF-7 Cells Using Ultra-high Frequency Ultrasound and Photoacoustics

  • M. J. Moore
  • E. M. Strohm
  • M. C. Kolios
Part of the following topical collections:
  1. ICPPP-18: Selected Papers of the 18th International Conference on Photoacoustic and Photothermal Phenomena


The nucleus-to-cytoplasmic (N:C) ratio of a cell is often used when assessing histology for the presence of malignant disease. In this proof of concept study, we present a new, non-optical method for determination of the N:C ratio using ultra-high Frequency ultrasound (US) and photoacoustics (PA). When using transducers in the 100 MHz–500 MHz range, backscattered US pulses and emitted PA waves are encoded with information pertaining to the dimension and morphology of micron-sized objects. If biological cells are interrogated, the diameter of the scattering or absorbing structure can be assessed by fitting the power spectra of the measured US or PA signals to theoretical models for US backscatter and PA emission from a fluid sphere. In this study, the cell and nucleus diameters of 9 MCF-7 breast cancer cells were determined using a new simplified model that calculates the theoretical values of the location of the power spectra minima for both US and PA signals. These diameters were then used to calculate the N:C ratio of the measured cells. The average cell diameter determined by US pulses from a transducer with a central frequency of 375 MHz was found to be \(15.5\,\upmu \hbox {m}\pm \,1.8\,\upmu \hbox {m}\). The PA waves emitted by the cell nuclei were used to determine an average nuclear diameter of \(12.0\,\upmu \hbox {m}\pm 1.3\,\upmu \hbox {m}\). The N:C ratio for these cells was calculated to be \(1.9\pm 1.0\), which agrees well with previously reported N:C values for this cell type.


Biological cell Photoacoustic microscopy Quantitative photoacoustics Quantitative ultrasound Ultra-high frequency ultrasound 



The authors would like to thank E. Berndl (Ryerson University) for her assistance with biological cell culturing. This research is supported in part by the Natural Sciences and Engineering Research Council of Canada, the Canadian Cancer Society, the Canadian Foundation for Innovation, and the Ontario Ministry for Research and Innovation.


  1. 1.
    B. Stewart, C. Wild, World Cancer Report 2014 (International Agency for Research on Cancer, Lyon, 2014)Google Scholar
  2. 2.
    C. Fletcher, Diagnostic Histopathology of Tumors, 4th edn. (Saunders/Elsevier, Philadelphia, 2013)Google Scholar
  3. 3.
    J.A. Swanson, M. Lee, P.E. Knapp, J. Cell Biol. 115, 941 (1991). doi: 10.1083/jcb.115.4.941 CrossRefGoogle Scholar
  4. 4.
    M.J. Doughty, Curr. Eye Res. 37, 583 (2012). doi: 10.3109/02713683.2012.655397 CrossRefGoogle Scholar
  5. 5.
    E. Cosatto, M. Miller, H.P. Graf, J.S. Meyer, Pattern Recognition, 2008. ICPR 2008. In 19th International Conference pp. 1–4 (2008). doi: 10.1109/ICPR.2008.4761112
  6. 6.
    S. Petushi, F.U. Garcia, M.M. Haber, C. Katsinis, A. Tozeren, BMC Med. Imaging 6, 14 (2006). doi: 10.1186/1471-2342-6-14 CrossRefGoogle Scholar
  7. 7.
    P. Balasubramanian, L. Yang, J.C. Lang, K.R. Jatana, D. Schuller, A. Agrawal, M. Zborowski, J.J. Chalmers, Mol. Pharm. 6, 1402 (2009). doi: 10.1021/mp9000519 CrossRefGoogle Scholar
  8. 8.
    V. Nandakumar, L. Kelbauskas, K.F. Hernandez, K.M. Lintecum, P. Senechal, K.J. Bussey, P.C.W. Davies, R.H. Johnson, D.R. Meldrum, Plos One 7, e29230 (2012). doi: 10.1371/journal.pone.0029230
  9. 9.
    V. Nandakumar, L. Kelbauskas, R. Johnson, D. Meldrum, Cytom. Part A 79A, 25 (2011). doi: 10.1002/cyto.a.20997
  10. 10.
    T.C. George, D.A. Basiji, B.E. Hall, D.H. Lynch, W.E. Ortyn, D.J. Perry, M.J. Seo, C.A. Zimmerman, P.J. Morrissey, Cytometry A 59A, 237 (2004). doi: 10.1002/cyto.a.20048
  11. 11.
    T.C. George, S.L. Fanning, P. Fitzgeral-Bocarsly, R.B. Medeiros, S. Highfill, Y. Shimizu, B.E. Hall, K. Frost, D. Basiji, W.E. Ortyn, P.J. Morrissey, D.H. Lynch, J. Immunol. Methods 311, 117 (2006). doi: 10.1016/j.jim.2006.01.018 CrossRefGoogle Scholar
  12. 12.
    D.A. Basiji, W.E. Ortyn, L. Liang, V. Venkatachalam, P. Morrissey, Clin. Lab. Med. 27, 653 (2007). doi: 10.1016/j.cll.2007.05.008 CrossRefGoogle Scholar
  13. 13.
    V.P. Zharov, E.I. Galanzha, V.V. Tuchin, Opt. Lett. 30, 628 (2005). doi: 10.1364/OL.30.000628 ADSCrossRefGoogle Scholar
  14. 14.
    V.P. Zharov, E.I. Galanzha, V.V. Tuchin, J. Biomed. Opt. 10, 051502 (2005). doi: 10.1117/1.2070167 ADSCrossRefGoogle Scholar
  15. 15.
    V.P. Zharov, E.I. Galanzha, V.V. Tuchin, J. Cell Biochem. 97, 916 (2006). doi: 10.1002/jcb.20766 CrossRefGoogle Scholar
  16. 16.
    E.I. Galanzha, E.V. Shashkov, P.M. Spring, J.Y. Suen, V.P. Zharov, Cancer Res. 69, 7926 (2009). doi: 10.1158/0008-5472.CAN-08-4900 CrossRefGoogle Scholar
  17. 17.
    E.I. Galanzha, E.V. Shashkov, T. Kelly, J.W. Kim, L. Yang, V.P. Zharov, Nat. Nanotechnol. 4, 855 (2009). doi: 10.1038/nnano.2009.333 ADSCrossRefGoogle Scholar
  18. 18.
    E.I. Galanzha, V.P. Zharov, Cancers (Basel) 5, 1691 (2013). doi: 10.3390/cancers5041691 CrossRefGoogle Scholar
  19. 19.
    D.A. Nedosekin, M.A. Juratli, M. Sarimollaoglu, C.L. Moore, N.J. Rusch, M.S. Smeltzer, V.P. Zharov, E.I. Galanzha, J. Biophoton. 6, 523 (2013). doi: 10.1002/jbio.201200242 CrossRefGoogle Scholar
  20. 20.
    E.M. Strohm, E.S.L. Berndl, M.C. Kolios, Photoacoustics 1, 49 (2013). doi: 10.1016/j.pacs.2013.08.003 CrossRefGoogle Scholar
  21. 21.
    E.M. Strohm, M.C. Kolios, Cytom. Part A 87, 741 (2015). doi: 10.1002/cyto.a.22698 CrossRefGoogle Scholar
  22. 22.
    E.M. Strohm, M.J. Moore, M.C. Kolios, IEEE J. Sel. Top. Quantum Electron. 22, 6801215 (2016). doi: 10.1109/JSTQE.2015.2497323 CrossRefGoogle Scholar
  23. 23.
    E.M. Strohm, E.S.L. Berndl, M.C. Kolios, Biophys. J. 105, 59 (2013). doi: 10.1016/j.bpj.2013.05.037 ADSCrossRefGoogle Scholar
  24. 24.
    G.J. Diebold, T. Sun, M.I. Khan, Phys. Rev. Lett. 67, 3384 (1991). doi: 10.1103/PhysRevLett.67.3384 ADSCrossRefGoogle Scholar
  25. 25.
    G.J. Diebold, M.I. Khan, S.M. Park, Science 250, 101 (1990). doi: 10.1126/science.250.4977.101 ADSCrossRefGoogle Scholar
  26. 26.
    E. Moeendarbary, L. Valon, M. Fritzsche, A.R. Harris, D.A. Moulding, A.J. Thrasher, E. Stride, L. Mahadevan, G.T. Charras, Nat. Mater. 12, 253 (2013). doi: 10.1038/nmat3517 ADSCrossRefGoogle Scholar
  27. 27.
    V.C. Anderson, J. Acoust. Soc. Am. 22, 426 (1950). doi: 10.1121/1.1906621 ADSCrossRefGoogle Scholar
  28. 28.
    H.G. Frey, R.R. Goodman, J. Acoust. Soc. Am. 40, 417 (1966). doi: 10.1121/1.1910089 ADSCrossRefGoogle Scholar
  29. 29.
    L.V. Wang, IEEE J. Sel. Top. Quantum Electron 14, 171 (2008). doi: 10.1109/JSTQE.2007.913398 CrossRefGoogle Scholar
  30. 30.
    G.J. Diebold, P.J. Westervelt, J. Acoust. Soc. Am. 84, 2245 (1988). doi: 10.1121/1.397017 ADSCrossRefGoogle Scholar
  31. 31.
    G. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (Prentice-Hall, New Jersey, 1997)Google Scholar
  32. 32.
    A. Siegman, Lasers (University Science Books, California, 1986)Google Scholar
  33. 33.
    M. Kolios, E. Strohm, G. Czarnota, in Quantitative Ultrasound Soft Tissues, ed. by J. Mamou, M. Oelze (Springer, Berlin, 2013), pp. 315–341Google Scholar
  34. 34.
    M.M. Pasternak, E.M. Strohm, E.S.L. Berndl, M.C. Kolios, Cell Cycle 14, 2891 (2015). doi: 10.1080/15384101.2015.1069925 CrossRefGoogle Scholar
  35. 35.
    H. Reile, G. Bernhardt, M. Koch, H. Schonenberger, M. Hollstein, F. Lux, Cancer Chemother. Pharmacol. 30, 113 (1992). doi: 10.1007/BF00686402 CrossRefGoogle Scholar
  36. 36.
    S.K. Arya, K.C. Lee, D.B. Dah’alan, Daniel, A.R.A. Rahman, Lab Chip 12, 2362 (2012). doi: 10.1039/C2LC21174B
  37. 37.
    D.L. Adams, P. Zhu, O.V. Makarova, S.S. Martin, M. Charpentier, S. Chumsri, S. Li, P. Amstutz, C.M. Tang, RSC Adv. 4, 4334 (2014). doi: 10.1039/C3RA46839A CrossRefGoogle Scholar
  38. 38.
    J. Dahle, E. Kalanxhi, N. Tisnek, Anticancer Res. 31, 2113 (2011)Google Scholar
  39. 39.
    I. Haque, S. Banerjee, A. De, G. Maity, S. Sarkar, M. Majumdar, S.S. Jha, D. McGragor, S.K. Banerjee, Oncogene 34, 3152 (2015). doi: 10.1038/onc.2014.250 CrossRefGoogle Scholar
  40. 40.
    B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 6th edn. (Garland Science, New York, 2015)Google Scholar
  41. 41.
    E.M. Strohm, V. Gnyawali, M. Van De Vondervoort, Y. Daghighi, S.S.H. Tsai, M.C. Kolios, Proc. SPIE 9708, 97081A (2016). doi: 10.1117/12.2211740 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. J. Moore
    • 1
    • 2
    • 3
  • E. M. Strohm
    • 1
    • 2
    • 3
  • M. C. Kolios
    • 1
    • 2
    • 3
  1. 1.Department of PhysicsRyerson UniversityTorontoCanada
  2. 2.Institute for Biomedical Engineering, Science and Technology (iBEST)Ryerson University and St. Michaels HospitalTorontoCanada
  3. 3.Keenan Research Centre for Biomedical ScienceTorontoCanada

Personalised recommendations