Thermal Diffusivity Mapping of Solids by Scanning Photoacoustic Piezoelectric Technique

  • Binxing Zhao
  • Chunming Gao
  • Laijun Yan
  • Yafei Wang
Part of the following topical collections:
  1. ICPPP-18: Selected Papers of the 18th International Conference on Photoacoustic and Photothermal Phenomena


Quantitative thermal diffusivity mapping of solid samples was achieved using the scanning photoacoustic piezoelectric (PAPE) technique. Based on the frequency-domain PAPE theoretical model, the methodology of the scanning PAPE thermal diffusivity mapping is introduced. An experimental setup capable of spatial and frequency scanning was established. Thermal diffusivity mapping of homogeneous and inhomogeneous samples was carried out. The obtained thermal diffusivity images are consistent with the optical images in image contrast and consistent with the reference values in thermal diffusivity. Results show that the scanning PAPE technique is able to determine the thermal diffusivity distribution of solids, hence providing an effective method for thermal diffusivity mapping.


Inhomogeneous materials Photoacoustic piezoelectric technique Thermal diffusivity mapping 



This work was supported by the National Science Foundation of China (Nos. 61379013 and 61574030) and the Fundamental Research Funds for the Central Universities of China (Nos. ZYGX2012Z006 and ZYGX2015J151).


  1. 1.
    S. Pham Tu Quoc, G. Cheymol, A. Semerok, Rev. Sci. Instrum. 85, 054903 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    M. Depriester, P. Hus, S. Delenclos, A. Hadj Sahraoui, Rev. Sci. Instrum. 78, 036101 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    C.H. Wang, Y. Liu, A. Mandelis, J. Shen, J. Appl. Phys. 101, 083503 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    C. Sánchez-Pérez, A. Gutiérrez-Arroyo, N. Alemán-García, AIP Conf. Proc. 1494, 62 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    D. Ferizović, L.K. Hussey, Y.S. Huang, M. Muñoz, Appl. Phys. Lett. 94, 131913 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    E.H. Lee, K.J. Lee, P.S. Jeon, J. Yoo, J. Appl. Phys. 88, 588 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    W. Jackson, N.M. Amer, J. Appl. Phys. 51, 3343 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    I.V. Blonskij, V.A. Tkhoryk, M.L. Shendeleva, J. Appl. Phys. 79, 3512 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    M.L. Shendeleva, Proc. SPIE 3359, 484 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Q.M. Sun, C.M. Gao, B.X. Zhao, H.B. Rao, Chin. Phys. B 19, 118103 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Q.M. Sun, C.M. Gao, B.X. Zhao, Y.F. Bi, Int. J. Thermophys. 31, 1157 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    J.Z. Zhang, Advanced Heat Transfer (Science Press, Beijing, 2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Binxing Zhao
    • 1
    • 2
  • Chunming Gao
    • 1
    • 2
  • Laijun Yan
    • 1
  • Yafei Wang
    • 1
  1. 1.School of Opto-electronic InformationUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Center for RoboticsUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations