Skip to main content
Log in

Laser-Generated Rayleigh Waves Propagating in Transparent Viscoelastic Adhesive Coating/Metal Substrate Systems

  • ICPPP 18
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We have established numerical models for simulating laser-generated Rayleigh waves in coating/substrate systems by a finite element method and investigated the propagation characteristics of Rayleigh waves in systems concerning the viscoelasticity and transparency of adhesive coatings. In this way, we have studied the influence of the mechanical properties of the coating, such as the elastic moduli, viscoelastic moduli, coating thickness, transparency, and coating material, on the propagation characteristics of the Rayleigh waves. The results show that the propagation characteristics of the Rayleigh waves can be divided into low- and high-frequency parts. The high-frequency propagation characteristics of the Rayleigh wave are closely related to the properties of the adhesive coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Cheng, T.W. Murry, J.D. Achenbach, J. Acoust. Soc. Am. 110, 848 (2001)

    Article  ADS  Google Scholar 

  2. Y.H. Liu, T.T. Wu, C.K. Lee, J. Acoust. Soc. Am. 111, 2638 (2002)

    Article  ADS  Google Scholar 

  3. H. Al-Qahtani, S.K. Datta, J. Appl. Phys. 96, 3645 (2004)

    Article  ADS  Google Scholar 

  4. X. Jian, Y. Fan, R.S. Edwards, S. Dixon, J. Appl. Phys. 100, 064907 (2006)

    Article  ADS  Google Scholar 

  5. X.D. Xu, J. Goossens, G. Shkerdin, C. Glorieux, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 675 (2008)

    Article  Google Scholar 

  6. P. Hess, A.M. Lomonosov, A.P. Mayer, Ultrasonics 54, 39 (2014)

    Article  Google Scholar 

  7. C. Grunsteidl, I.A. Veres, J. Roither, P. Burgholzer, T.W. Murray, T. Berer, Appl. Phys. Lett. 102, 011103 (2013)

  8. C. Ni, N. Chigarev, V. Tournat, N. Delorme, N. Chigarev, Z. Shen, V.E. Gusev, J. Appl. Phys. 113, 014906 (2013)

    Article  ADS  Google Scholar 

  9. J. Jia, Z.H. Shen, K.H. Sun, Appl. Opt. 54, 7406 (2015)

    Article  ADS  Google Scholar 

  10. S.I. Rokhlin, Y.J. Wang, J. Acoust. Soc. Am. 89, 503 (1991)

    Article  ADS  Google Scholar 

  11. K. Heller, L.J. Jacobs, J. Qu, NDT&E Int. 33, 555 (2000)

    Article  Google Scholar 

  12. M. Castaings, C. Bacon, B. Hosten, J. Acoust. Soc. Am. 115, 1125 (2004)

    Article  ADS  Google Scholar 

  13. H.X. Sun, B.Q. Xu, R.Z. Qian, J. Appl. Phys. 106, 073108 (2009)

    Article  ADS  Google Scholar 

  14. H.X. Sun, S.Y. Zhang, J. Appl. Phys. 108, 123101 (2010)

    Article  ADS  Google Scholar 

  15. H.X. Sun, S.Y. Zhang, Int. J. Thermophys. 34, 1769 (2013)

    Article  ADS  Google Scholar 

  16. H.X. Sun, S.Y. Zhang, J. Appl. Phys. 109, 073107 (2011)

    Article  ADS  Google Scholar 

  17. H.X. Sun, S.Y. Zhang, J.P. Xia, Int. J. Thermophys. 36, 1156 (2015)

    Article  ADS  Google Scholar 

  18. H.X. Sun, B.Q. Xu, H. Zhang, Q. Gao, S.Y. Zhang, Chin. Phys. B 20, 14302 (2011)

    Article  ADS  Google Scholar 

  19. H.X. Sun, S.Y. Zhang, S.Q. Yuan, Y.J. Guan, Y. Ge, Int. J. Thermophys. 37, 68 (2016)

    Article  ADS  Google Scholar 

  20. COMSOL Multiphysics User’s Guide, Version 5.2. http://www.comsol.com/

  21. O.M. Mukdadi, S.K. Datta, Rev. Prog. Quant. Nondestr. Eval. 23, 238 (2004)

    Article  ADS  Google Scholar 

  22. M. Castaings, M. Lowe, J. Acoust. Soc. Am. 123, 696 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (Grant No. 2012CB921504), Major Program of the National Natural Science Foundation of China (Grant No. 51239005), National Natural Science Foundation of China (Grant No. 11404147), Natural Science Foundation of Jiangsu Province of China (Grant No. BK20140519), China Postdoctoral Science Foundation (Grant No. 2015M571672), Research Fund for Advanced Talents of Jiangsu University (Grant No. 11JDG118), Training Project of Young Backbone Teachers of Jiangsu University, and Special Fund for Public Interest of China (Grant No. 201510068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-xiang Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Yj., Sun, Hx., Yuan, Sq. et al. Laser-Generated Rayleigh Waves Propagating in Transparent Viscoelastic Adhesive Coating/Metal Substrate Systems. Int J Thermophys 37, 101 (2016). https://doi.org/10.1007/s10765-016-2107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2107-4

Keywords

Navigation