Laser-Generated Rayleigh Waves Propagating in Transparent Viscoelastic Adhesive Coating/Metal Substrate Systems

  • Yi-jun Guan
  • Hong-xiang Sun
  • Shou-qi Yuan
  • Shu-yi Zhang
  • Yong Ge
Part of the following topical collections:
  1. ICPPP-18: Selected Papers of the 18th International Conference on Photoacoustic and Photothermal Phenomena


We have established numerical models for simulating laser-generated Rayleigh waves in coating/substrate systems by a finite element method and investigated the propagation characteristics of Rayleigh waves in systems concerning the viscoelasticity and transparency of adhesive coatings. In this way, we have studied the influence of the mechanical properties of the coating, such as the elastic moduli, viscoelastic moduli, coating thickness, transparency, and coating material, on the propagation characteristics of the Rayleigh waves. The results show that the propagation characteristics of the Rayleigh waves can be divided into low- and high-frequency parts. The high-frequency propagation characteristics of the Rayleigh wave are closely related to the properties of the adhesive coating.


Coating/substrate structure Finite element method Laser ultrasound Rayleigh wave Viscoelasticity 



This work was supported by the National Basic Research Program of China (Grant No. 2012CB921504), Major Program of the National Natural Science Foundation of China (Grant No. 51239005), National Natural Science Foundation of China (Grant No. 11404147), Natural Science Foundation of Jiangsu Province of China (Grant No. BK20140519), China Postdoctoral Science Foundation (Grant No. 2015M571672), Research Fund for Advanced Talents of Jiangsu University (Grant No. 11JDG118), Training Project of Young Backbone Teachers of Jiangsu University, and Special Fund for Public Interest of China (Grant No. 201510068).


  1. 1.
    A. Cheng, T.W. Murry, J.D. Achenbach, J. Acoust. Soc. Am. 110, 848 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Y.H. Liu, T.T. Wu, C.K. Lee, J. Acoust. Soc. Am. 111, 2638 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    H. Al-Qahtani, S.K. Datta, J. Appl. Phys. 96, 3645 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    X. Jian, Y. Fan, R.S. Edwards, S. Dixon, J. Appl. Phys. 100, 064907 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    X.D. Xu, J. Goossens, G. Shkerdin, C. Glorieux, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 675 (2008)CrossRefGoogle Scholar
  6. 6.
    P. Hess, A.M. Lomonosov, A.P. Mayer, Ultrasonics 54, 39 (2014)CrossRefGoogle Scholar
  7. 7.
    C. Grunsteidl, I.A. Veres, J. Roither, P. Burgholzer, T.W. Murray, T. Berer, Appl. Phys. Lett. 102, 011103 (2013)Google Scholar
  8. 8.
    C. Ni, N. Chigarev, V. Tournat, N. Delorme, N. Chigarev, Z. Shen, V.E. Gusev, J. Appl. Phys. 113, 014906 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    J. Jia, Z.H. Shen, K.H. Sun, Appl. Opt. 54, 7406 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    S.I. Rokhlin, Y.J. Wang, J. Acoust. Soc. Am. 89, 503 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    K. Heller, L.J. Jacobs, J. Qu, NDT&E Int. 33, 555 (2000)CrossRefGoogle Scholar
  12. 12.
    M. Castaings, C. Bacon, B. Hosten, J. Acoust. Soc. Am. 115, 1125 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    H.X. Sun, B.Q. Xu, R.Z. Qian, J. Appl. Phys. 106, 073108 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    H.X. Sun, S.Y. Zhang, J. Appl. Phys. 108, 123101 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    H.X. Sun, S.Y. Zhang, Int. J. Thermophys. 34, 1769 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    H.X. Sun, S.Y. Zhang, J. Appl. Phys. 109, 073107 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    H.X. Sun, S.Y. Zhang, J.P. Xia, Int. J. Thermophys. 36, 1156 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    H.X. Sun, B.Q. Xu, H. Zhang, Q. Gao, S.Y. Zhang, Chin. Phys. B 20, 14302 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    H.X. Sun, S.Y. Zhang, S.Q. Yuan, Y.J. Guan, Y. Ge, Int. J. Thermophys. 37, 68 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    COMSOL Multiphysics User’s Guide, Version 5.2.
  21. 21.
    O.M. Mukdadi, S.K. Datta, Rev. Prog. Quant. Nondestr. Eval. 23, 238 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    M. Castaings, M. Lowe, J. Acoust. Soc. Am. 123, 696 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yi-jun Guan
    • 1
  • Hong-xiang Sun
    • 1
    • 2
    • 3
  • Shou-qi Yuan
    • 1
  • Shu-yi Zhang
    • 2
  • Yong Ge
    • 1
  1. 1.Faculty of Science, Research Center of Fluid Machinery Engineering and TechnologyJiangsu UniversityZhenjiangChina
  2. 2.Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina
  3. 3.State Key Laboratory of Acoustics, Institute of AcousticsChinese Academy of SciencesBeijingChina

Personalised recommendations