Thermally Stimulated Luminescence of \(\hbox {Y}_{2}{\mathrm {Si}}{\mathrm {O}}_{5}{:}~{\mathrm {Ce}}^{3+}\) Commercial Phosphor Powder and Thin Films



We report on the thermoluminescence (TL) properties of \(\hbox {Y}_{2}{\mathrm {Si}}{\mathrm {O}}_{5}{:}\,{\mathrm {Ce}}^{3+}\) phosphor powder and thin films. For the phosphor powder, the TL intensity increases with an increase in UV dose for up to 20 min and then decreases. The TL intensity peak shifts slightly to higher-temperature region at relatively high heating rates, but with reduced peak intensity. Important TL kinetic parameters, such as the activation energy (E) and the frequency factor (s), were calculated from the glow curves using a variable heating rate method, and it was found that the glow peaks obey first-order kinetics. For the films, broad TL emissions over a wide temperature range with reduced intensity relative to that of the powder were observed. The maxima of the TL glow peaks of the films deposited in oxygen ambient and vacuum shift toward higher temperature relative to the TL peak position of the film deposited in an argon environment. Vacuum environment resulted in the formation of a deep trap relative to oxygen and argon environments. Furthermore, the structure of \(\hbox {Y}_{2}{\mathrm {Si}}{\mathrm {O}}_{5}{:}\,{\mathrm {Ce}}^{3+}\) phosphor powder transformed from \({x}_{2}\)-monoclinic polycrystalline phase to \({x}_{1}\)-monoclinic polycrystalline phase, for deposition at low substrate temperature.


Heating rate Phosphor Thermoluminescence Thin film 



The authors would like to thank Dr. A. N. Kirkbride who assisted in proof reading the final article.


  1. 1.
    S. McKeever, Thermoluminescence of Solids (Cambridge University Press, London, 1983)Google Scholar
  2. 2.
    M. Karmakar, Indian J. Phys. 84, 529 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    V. Pagonis, G. Kitis, C. Furetta, Numerical and Practical Exercises in Thermoluminecsnce (Springer, New York, 2006)Google Scholar
  4. 4.
    P. Kumari, P. Baitha, J. Manam, Indian J. Phys. 89, 1297 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    E. Raja, B. Dhabekar, S. Menon, S. More, T. Rao, R. Kher, Indian J. Pure Appl. Phys. 47, 420 (2009)Google Scholar
  6. 6.
    A. Singh, S. Singh, L. Singh, Indian J. Phys. 89, 41 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    M. Sahini, H. Wagiran, I. Hossain, M. Saeed, H. Ali, Indian J. Phys. 88, 843–847 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    J. Manam, S. Das, Indian J. Pure Appl. Phys. 47, 435 (2009)Google Scholar
  9. 9.
    Y. Parganiha, J. Kaur, V. Dubey, D. Chadrakar, Superlattice. Microstruct. 77, 152 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    A. Srivastava, C. Ronda, Luminescence from Theory to Applications (Wiley, Germany, 2007), pp. 10–100Google Scholar
  11. 11.
    D. Cooke et al., Appl. Phys. Lett. 88, 103 (2006)CrossRefGoogle Scholar
  12. 12.
    H. Huang, B. Yan, Solid State Commun. 132, 773 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    T. Bottger, C. Thiel, R. Cone, Y. Sun, Phys. Rev. B 79, 115104 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    B. Comaskey et al., Opt. Lett. 18, 2029 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    B. Lauritzen et al., Phys. Rev. Lett. 104, 080502 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Cole et al., Appl. Phys. Lett. 81, 3525 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Ogura, M. Kondo, T. Morimoto, A. Notomi, T. Sekigawa, Mater. Trans. 42, 1124 (2001)CrossRefGoogle Scholar
  18. 18.
    H. Bryan, P. Gallagher, G. Berkstresser, J. Am. Ceram. Soc. 71, 42 (1988)CrossRefGoogle Scholar
  19. 19.
    M. Apricio, A. Duran, J. Am. Ceram. Soc. 83, 1351 (2000)CrossRefGoogle Scholar
  20. 20.
    X. Qin, Y. Ju, S. Bernhard, N. Yao, Mater. Res. Bull. 42, 1440 (2007)CrossRefGoogle Scholar
  21. 21.
    J. Dolo et al., Appl. Phys. A 101, 655 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    K. Hillie, H. Swart, Appl. Surf. Sci. 183, 304 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Parganiha, J. Kaur, V. Dubey, D. Chandrakar, N. Suryanarayana, Res. Chem. Int. 42, 2267 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Meijerink, W. Schipper, G. Blasse, J. Phys. D 24, 997 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    M. Kumar, G. Chourasiya, Meas. Sci. Technol. 20, 058001 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    M. Kumar, G. Chourasiya, B. Bhatt, C. Sunta, J. Lumin. 130, 1216 (2010)CrossRefGoogle Scholar
  27. 27.
    Q. Shi et al., Thin Solid Films 520, 6845 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    H. Yang, J. Korean Phys. Soc. 53, 1430 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    B. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1956), p. 99Google Scholar
  30. 30.
    A. Dikovska, P. Atanasov, C. Vasilev, I. Dimitrov, T. Stoyanchov, J. Optoelectron. Adv. Mater. 7, 1329 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of the Free StatePhuthaditjhabaSouth Africa
  2. 2.CSIR-Energy CenterCouncil for Scientific and Industrial ResearchPretoriaSouth Africa

Personalised recommendations