Skip to main content
Log in

Step-Scan T-Cell Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for Monitoring Environmental Air Pollutants

  • ICPPP 18
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Air pollutants have adverse effects on the Earth’s climate system. There is an urgent need for cost-effective devices capable of recognizing and detecting various ambient pollutants. An FTIR photoacoustic spectroscopy (FTIR-PAS) method based on a commercial FTIR spectrometer developed for air contamination monitoring will be presented. A resonant T-cell was determined to be the most appropriate resonator in view of the low-frequency requirement and space limitations in the sample compartment. Step-scan FTIR-PAS theory for regular cylinder resonator has been described as a reference for prediction of T-cell vibration principles. Both simulated amplitude and phase responses of the T-cell show good agreement with measurement data Carbon dioxide IR absorption spectra were used to demonstrate the capacity of the FTIR-PAS method to detect ambient pollutants. The theoretical detection limit for carbon dioxide was found to be 4 ppmv. A linear response to carbon dioxide concentration was found in the range from 2500 ppmv to 5000 ppmv. The results indicate that it is possible to use step-scan FTIR-PAS with a T-cell as a quantitative method for analysis of ambient contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. H. Vargas, L. Bertrand, Appl. Spectrosc. 42, 134 (1988)

    Article  ADS  Google Scholar 

  2. J.A. Gardella, G.L. Grobe III, W.L. Hopson, E.M. Eyring, Anal. Chem. 56, 1169 (1984)

    Article  Google Scholar 

  3. R.O. Carter III, J.B. McCaullum, Polym. Degrad. Stab. 45, 1 (1994)

    Article  Google Scholar 

  4. R.O. Carter, M.C. Paputa Peck, M.A. Samus, P.C. Killgoar, Appl. Spectrosc. 43, 1350 (1989)

    Article  ADS  Google Scholar 

  5. R.M. Dittmar, J.L. Chao, R.A. Palmer, Appl. Spectrosc. 45, 1104 (1991)

    Article  ADS  Google Scholar 

  6. B. Bauman, B. Kost, H. Groninga, M. Wolff, Rev. Sci. Instrum. 77, 044901 (2007)

    Article  ADS  Google Scholar 

  7. J. Uotila, J. Kauppinen, Appl. Spectrosc. 62, 665 (2008)

    Article  ADS  Google Scholar 

  8. A. Selamet, N.S. Dickey, J. Sound Vib. 187, 358 (1995)

    Article  ADS  Google Scholar 

  9. A. Selamet, P.M. Radavich, J. Acoust. Soc. Am. 101, 41 (1997)

    Article  ADS  Google Scholar 

  10. A. Selamet, Z.L. Ji, J. Acoust. Soc. Am. 107, 2360 (2000)

    Article  ADS  Google Scholar 

  11. Z.L. Ji, J. Sound Vib. 283, 1180 (2005)

    Article  ADS  Google Scholar 

  12. B. Bauman, B. Kost, H. Groninga, M. Wolff, Numerical shape optimization of photoacoustic samples cells: first results. Excerpt from the proceeding of the Comsol Multiphysics Users Conference 2005, Frankfurt (2005)

  13. E. Perrey-Debain, R. Maréchal, J.M. Ville, J. Sound Vib. 333, 4458 (2014)

    Article  ADS  Google Scholar 

  14. P.R. Griffiths, J.A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 2007), pp. 20–26

  15. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980), pp. 15–70

  16. Y. Pao, Optoacoustic Spectroscopy and Detection (Academic Press, New York, 1977), pp. 10–25

  17. P.M. Morse, Vibration and Sound (McGraw-Hill, New York, 1948), pp. 59–130

    Google Scholar 

  18. F.G.C. Bijnen, J. Reuss, F.J.M. Harren, Rev. Sci. Instrum. 67, 2914 (1996)

    Article  ADS  Google Scholar 

  19. A. Miklós, P. Hess, Rev. Sci. Instrum. 72, 1937 (2001)

    Article  ADS  Google Scholar 

  20. L. Duggen, N. Lopes, M. Willatzen, H.G. Rubahn, Int. J. Thermophys. 32, 772 (2011)

    Article  ADS  Google Scholar 

  21. V. Zeninari, V.A. Kapitanov, D. Courtois, Y.D. Ponomarev, Infrared Phys. 40, 1 (1999)

    Article  Google Scholar 

  22. C.B. Hirschmann, J. Uotila, S. Ojala, J. Tenhunen, R.L. Keiski, Appl. Spectrosc. 64, 293 (2010)

    Article  ADS  Google Scholar 

  23. B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley & Sons, New York, 2004), pp. 15–93

  24. V. Koskinen, J. Fonsen, J. Kauppinen, I. Kauppinen, Vib. Spectrosc. 42, 239 (2006)

    Article  Google Scholar 

  25. J. Uotila, V. Koskinen, J. Kauppinen, Vib. Spectrosc. 38, 3 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

A. M. is grateful to the Canada Research Chairs and to the Natural Sciences and Engineering Research Council of Canada (NSERC) for a Discovery Grant. A. M. gratefully acknowledges the Chinese Recruitment Program of Global Experts (Thousand Talents). L. L. and H. H. are also grateful to NNSFC (61574030) and the China Scholarship Council (CSC) for an international student grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Mandelis.

Additional information

This article is part of the selected papers presented at the 18th International Conference on Photoacoustic and Photothermal Phenomena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Mandelis, A., Melnikov, A. et al. Step-Scan T-Cell Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for Monitoring Environmental Air Pollutants. Int J Thermophys 37, 64 (2016). https://doi.org/10.1007/s10765-016-2070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2070-0

Keywords

Navigation