Radiative Properties of Ceramic \(\hbox {Al}_{2}\hbox {O}_{3}\), AlN, and \(\hbox {Si}_{3}\hbox {N}_{4}\): I. Experiments

Part of the following topical collections:
  1. The 19th Symposium on Thermophysical Properties


The radiative properties of dense ceramic \(\hbox {Al}_{2}\hbox {O}_{3}\), AlN, and \(\hbox {Si}_{3}\hbox {N}_{4}\) plates are investigated from the visible to the mid-infrared region at room temperature. Each specimen has different surface finishings on different sides of the laminate. A monochromator was used with an integrating sphere to measure the directional-hemispherical reflectance and transmittance of these samples at wavelengths from 0.4 \(\upmu \hbox {m}\) to 1.8 \(\upmu \hbox {m}\). The specular reflectance was obtained by a subtraction technique. A Fourier-transform infrared spectrometer was used to measure the directional-hemispherical or specular reflectance and transmittance with appropriate accessories from about 1.6 \(\upmu \hbox {m}\) to 19 \(\upmu \hbox {m}\). All measurements were performed at near-normal incidence on either the smooth side or the rough side of the sample. The experimental observations are qualitatively interpreted considering the optical constants, surface roughness, and volume scattering and absorption.


Ceramics Radiative properties Semitransparent Surface roughness 



This study was mainly supported by the US National Science Foundation (CBET-1235975). Q. Cheng would also like to thank the China Scholarship Council and the Foundation of State Key Laboratory of Coal Combustion (FSKLCCB1601) for the sponsorship. The facilities at the Georgia Tech Institute for Electronics and Nanotechnology (IEN) were used for the characterization of the samples.


  1. 1.
    B.M. Agrawal, M.P. Mengüç, Int. J. Heat Mass Transfer 34, 633 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    J. Moersch, P.R. Christensen, J. Geophys. Res. 100, 7465 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    L. Pilon, R. Viskanta, J. Am. Ceram. Soc. 86, 1313 (2003)CrossRefGoogle Scholar
  4. 4.
    L. Dombrovsky, J. Randrianalisoa, D. Baillis, L. Pilon, Appl. Opt. 44, 7021 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    D. Baillis, J.-F. Sacadura, J. Quant. Spectrosc. Radiat. Transfer 67, 327 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    B. Zeghondy, E. Iacona, J. Taine, Int. J. Heat Mass Transfer 49, 3702 (2006)CrossRefGoogle Scholar
  7. 7.
    S. Haussener, W. Lipiński, J. Petrasch, P. Wyss, A. Steinfeld, J. Heat Transfer 131, 072701 (2009)CrossRefGoogle Scholar
  8. 8.
    B. Rousseau, D. De Sousa Meneses, P. Echegut, M. Di Michiel, J.-F. Thovert, Appl. Opt. 46, 4266 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    J.I. Eldridge, C.M. Spuckler, J. Am. Ceram. Soc. 91, 1603 (2008)CrossRefGoogle Scholar
  10. 10.
    B.X. Wang, C.Y. Zhao, Int. J. Heat Mass Transfer 89, 920 (2015)CrossRefGoogle Scholar
  11. 11.
    J.R. Howell, R. Siegel, M.P. Mengüç, Thermal Radiation Heat Transfer, 5th edn. (CRC Press Inc., Boca Raton, 2010)Google Scholar
  12. 12.
    M.F. Modest, Radiative Heat Transfer, 3rd edn. (Academic Press, New York, 2013)Google Scholar
  13. 13.
    A.A. Maradudin (ed.), Light Scattering and Nanoscale Surface Roughness (Springer, New York, 2007)Google Scholar
  14. 14.
    Z.M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, New York, 2007)Google Scholar
  15. 15.
    H.J. Lee, Y.-B. Chen, Z.M. Zhang, Int. J. Heat Mass Transfer 49, 4482 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Q.Z. Zhu, H.J. Lee, Z.M. Zhang, Front. Energy Power Eng. China 3, 60 (2009)CrossRefGoogle Scholar
  17. 17.
    S.K. Andersson, C.G. Ribbing, Phys. Rev. B 49, 11336 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    C.A. Worrell, J. Mater. Sci. 21, 781 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    J.G.J. Peelen, R. Metselaar, J. Appl. Phys. 45, 216 (1974)ADSCrossRefGoogle Scholar
  20. 20.
    J. Manara, R. Caps, F. Raether, J. Fricke, Opt. Commun. 168, 237 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    O. Rozenbaum, D. De Sousa Meneses, P. Echegut, Int. J. Thermophys. 30, 580 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    O. Rozenbaum, D. De Sousa Meneses, P. Echegut, P. Levitz, High Temp-High Press. 32, 61 (2000)CrossRefGoogle Scholar
  23. 23.
    F. Gervais, in Handbook of Optical Constants of Solids, vol. 2, ed. by E.D. Palik (Academic Press, San Diego, 1998), pp. 761–775CrossRefGoogle Scholar
  24. 24.
    W.J. Tropf, in Handbook of Optical Constants of Solids, vol. 3, ed. by E.D. Palik (Academic Press, San Diego, 1998), pp. 653–681Google Scholar
  25. 25.
    J. Ishii, A. Ono, Meas. Sci. Technol. 12, 2103 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    B. Rousseau, L. del Campo, J.-Y. Rolland, D. De Sousa Meneses, P. Echegut, in 14th International Heat Transfer Conference (American Society of Mechanical Engineers, 2010), pp. 933-938Google Scholar
  27. 27.
    A. Krell, P. Blank, H. Ma, T. Hutzler, M.P. Bruggen, R. Apetz, J. Am. Ceram. Soc. 86, 12 (2003)CrossRefGoogle Scholar
  28. 28.
    R. Apetz, P. Van Bruggen, J. Am. Ceram. Soc. 86, 480 (2003)CrossRefGoogle Scholar
  29. 29.
    B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, Y. Kagawa, Acta Mater. 57, 1319 (2009)CrossRefGoogle Scholar
  30. 30.
    T. Chartier, E. Streicher, P. Boch, J. Eur. Ceram. Soc. 9, 231 (1992)CrossRefGoogle Scholar
  31. 31.
    M. Descamps, G. Moreau, M. Mascart, B. Thierry, J. Eur. Ceram. Soc. 13, 221 (1994)CrossRefGoogle Scholar
  32. 32.
    A. Collins, E. Lightowlers, P. Dean, Phys. Lett. 158, 833 (1967)Google Scholar
  33. 33.
    J. Tischler, J. Freitas, Appl. Phys. Lett. 85, 1943 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    W. Moore, J. Freitas Jr., R. Holm, O. Kovalenkov, V. Dmitriev, Appl. Phys. Lett. 86, 141912 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    D. Jones, R. French, H. MuÈllejans, S. Loughin, A. Dorneich, P. Carcia, J. Mater. Res. 14, 4337 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    S. Loughin, R.H. French, in Handbook of Optical Constants of Solids, vol. 3, ed. by E.D. Palik (Academic Press, San Diego, 1998), pp. 373–401Google Scholar
  37. 37.
    F.L. Riley, J. Am. Ceram. Soc. 83, 245 (2000)CrossRefGoogle Scholar
  38. 38.
    O. Yeheskel, Y. Gefen, M. Talianker, J. Mater. Sci. 19, 745 (1984)ADSCrossRefGoogle Scholar
  39. 39.
    F. Habraken, A. Kuiper, Mater. Sci. Eng. R 12, 123 (1994)CrossRefGoogle Scholar
  40. 40.
    E. Taft, J. Electrochem. Soc. 118, 1341 (1971)CrossRefGoogle Scholar
  41. 41.
    S.V. Deshpande, E. Gulari, S.W. Brown, S.C. Rand, J. Appl. Phys. 77, 6534 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    H.R. Philipp, in Handbook of Optical Constants of Solids, vol. 1, ed. by E.D. Palik (Academic Press, San Diego, 1998), pp. 771–774Google Scholar
  43. 43.
    M. Klanjšek Gunde, M. Maček, Phys. Status Solidi A 183, 439 (2001)ADSCrossRefGoogle Scholar
  44. 44.
    G. Cataldo, J.A. Beall, H.-M. Cho, B. McAndrew, M.D. Niemack, E.J. Wollack, Opt. Lett. 37, 4200 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Appl. Opt. 51, 6789 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    T. Nishimura, X. Xu, K. Kimoto, N. Hirosaki, H. Tanaka, Sci. Technol. Adv. Mater. 8, 635 (2007)CrossRefGoogle Scholar
  47. 47.
    Z. Zhang, M.F. Modest, J. Heat Transfer 120, 322 (1998)CrossRefGoogle Scholar
  48. 48.
    T. Flaherty, P.V. Kelly, S. Lynch, R.T. Cundill, M.O. Keeffe, G.M. Crean, in Advanced Materials’ 93: Ceramics, Powders, Corrosion and Advanced Processing, ed. by S. Somiya (Newnes, Tokyo, 1993), pp. 937–940Google Scholar
  49. 49.
    V.R. Weidner, J.J. Hsia, J. Opt. Soc. Am. 71, 856 (1981)ADSCrossRefGoogle Scholar
  50. 50.
    H.J. Lee, A.C. Bryson, Z.M. Zhang, Int. J. Thermophys. 28, 918 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    D.W. Lynch, in Handbook of Optical Constants of Solids, vol. 1, ed. by E.D. Palik (Academic Press, San Diego, 1998), pp. 275–368Google Scholar
  52. 52.
    L.P. Wang, B.J. Lee, X.J. Wang, Z.M. Zhang, Int. J. Heat Mass Transfer 52, 3024 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.State Key Laboratory of Coal CombustionHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations