Photocarrier Radiometry Investigation of Light-Induced Degradation of Boron-Doped Czochralski-Grown Silicon Without Surface Passivation

  • Qian Wang
  • Bincheng Li
Part of the following topical collections:
  1. ICPPP-18: Selected Papers of the 18th International Conference on Photoacoustic and Photothermal Phenomena


Light-induced degradation (LID) effects of boron-doped Cz silicon wafers without surface passivation are investigated in details by photocarrier radiometry (PCR). The resistivity of all samples is in the range of \(0.006~\Omega {\cdot } \hbox {cm}\) to \(38~\Omega {\cdot } \hbox {cm}\). It is found that light-induced changes in surface state occupation have a great effect on LID under illumination. With the increasing contribution of light-induced changes in surface state occupation, the generation rate of the defect decreases. The light-induced changes in surface state occupation and light-induced degradation dominate the temporal behaviors of the excess carrier density of high- and low-resistivity Si wafers, respectively. Moreover, the temporal behaviors of PCR signals of these samples under laser illumination with different powers, energy of photons, and multiple illuminations were also analyzed to understand the light-induced change of material properties. Based on the nonlinear dependence of PCR signal on the excitation power, a theoretical model taking into account both light-induced changes in surface state occupation and LID processes was proposed to explain those temporal behaviors.


B–O defect Light-induced degradation Photocarrier radiometry Silicon Surface state 



The authors are grateful for the financial support from the National Science Foundation of China (Contract No. 61076090).


  1. 1.
    J. Schmidt, K. Bothe, Phys. Rev. B 69, 024107 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    K. Bothe, J. Schmidt, J. Appl. Phys. 99, 013701 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    V.V. Voronkov, R. Falster, J. Appl. Phys. 107, 053509 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    V.V. Voronkov, R. Falster, K. Bothe, B. Lim, J. Schmidt, J. Appl. Phys. 110, 063515 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    P. Hamer, B. Hallam, M. Abbott, S. Wenham, Phys. Status Solidi 9(5), 297–300 (2015)Google Scholar
  6. 6.
    Y.C. Wu, X.G. Yu, P. Chen, X.Z. Chen, D.R. Yang, Appl. Phys. Lett. 104, 102108 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Y.C. Wu, X.G. Yu, H. He, P. Chen, D.R. Yang, Appl. Phys. Lett. 106, 102105 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    M.E. Rodriguze, J.A. Garcia, A. Mandelis, C. Jean, Y. Riopel, Appl. Phys. Lett. 74, 2429 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    J. Opsal, M.W. Taylor, W.L. Smith, A. Rosencwaig, J. Appl. Phys. 61, 240 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    A. Mandelis, J. Batista, D. Shaughnessy, Phys. Rev. B 67, 205208 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    B. Li, D. Shaughnessy, A. Mandelis, J. Appl. Phys. 97, 023701 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    J. Tolev, A. Mandelis, M. Pawlak, J. Electrochem. Soc. 154, H983 (2007)CrossRefGoogle Scholar
  13. 13.
    J. Giesecke, Quantitative Recombination and Transport Properties in Silicon from Dynamic Luminescence (Springer, Freiburg, 2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina
  3. 3.School of Optoelectronic InformationUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations