Skip to main content
Log in

Near-Field Photothermal Heating with a Plasmonic Nanofocusing Probe

  • ICPPP 18
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Noble metal nanostructures support plasmon resonances—collective oscillation of charge carriers at optical frequencies—and serve as effective tools to create bright light sources at the nanoscale. These sources are useful in broad application areas including, super-resolution imaging and spectroscopy, nanolithography, and near-field optomechanical transducers. The feasibility of these applications relies on efficient conversion of free-space propagating light to plasmons. Recently, we demonstrated a hybrid nanofocusing scheme for efficient coupling of light to plasmons at the apex of a scanning probe. In the approach, free-space light is coupled to propagating surface plasmon polaritons (SPPs) on the tapered shaft of the scanning probe. The SPPs propagate adiabatically towards the probe tip where they are coupled to localized plasmons (LSPs). The nanofocusing scheme was explored in a near-field scanning optical microscope for super-resolution imaging, near-field transduction of nanomechanical vibrations, and local detection of ultrasound. Owing to the strong concentration of light at the probe, significant heating of the tip and a sample positioned in the optical near-field is expected. This paper investigates the local heating produced by the plasmonic nanofocusing probe under steady-state conditions using the tip-enhanced Raman scattering approach. In addition, a finite element model is explored to study the coupling of free propagating light to LSPs, and to estimate the temperature rise expected in a halfspace heated by absorption of the LSPs. This study has implications for exploring the plasmonic nanofocusing probe in heat-assisted nanofabrication and fundamental studies of nanoscale heat transport in materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.J. Babadjanyan, N.L. Margaryan, KhV Nerkararyan, J. Appl. Phys. 87, 3785 (2000)

    Article  ADS  Google Scholar 

  2. M.I. Stockman, Phys. Rev. Lett. 93, 137404 (2004)

    Article  ADS  Google Scholar 

  3. R. Ruppin, Phys. Lett. A 340, 299 (2005)

    Article  ADS  Google Scholar 

  4. D. Sadiq, J. Shirdel, J.S. Lee, E. Selishcheva, N. Park, C. Lienau, Nano Lett. 11, 1609–1613 (2011)

    Article  ADS  Google Scholar 

  5. Z. Zhang, P. Ahn, B.Q. Dong, O. Balogun, C. Sun, Sci. Rep. 3, 2803 (2013)

    ADS  Google Scholar 

  6. S. Berweger, J.M. Atkin, R.L. Olmon, M.B. Raschke, J. Phys. Chem. Lett. 1, 3427–3432 (2010)

    Article  Google Scholar 

  7. J. Vogelsang, J. Robin, B.J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, C. Lienau, Nano Lett. 15, 4685–4691 (2015)

    Article  ADS  Google Scholar 

  8. S. Berweger, J.M. Atkin, X.G. Xu, R.L. Olmon, M.B. Raschke, Nano Lett. 11, 4309–4313 (2011)

    Article  ADS  Google Scholar 

  9. P. Ahn, X. Chen, Z. Zhang, M. Ford, D. Rosenmann, I.W. Jung, C. Sun, O. Balogun, Sci. Rep. 5, 10058 (2015)

    Article  ADS  Google Scholar 

  10. P. Ahn, Z. Zhang, C. Sun, O. Balogun, J. Appl. Phys. 113, 234903 (2013)

    Article  ADS  Google Scholar 

  11. A.V. Malkovskiy, V.I. Malkovsky, A.M. Kisliuk, C.A. Barrios, M.D. Foster, A.P. Sokolov, J. Raman Spectrosc. 40, 1349–1354 (2009)

    Article  ADS  Google Scholar 

  12. Y. Yue, X. Chen, X. Wang, ACS Nano. 5(6), 4466–4475 (2011)

    Article  Google Scholar 

  13. M. Balkanski, R.F. Wallis, E. Haro, Phys. Rev. B 28, 1928–1934 (1983)

    Article  ADS  Google Scholar 

  14. I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Nano Lett. 7, 2645–2649 (2007)

    Article  ADS  Google Scholar 

  15. T.R. Hart, R.L. Aggarwal, B. Lax, Phys. Rev. B 1, 638–642 (1970)

    Article  ADS  Google Scholar 

  16. J. Maultzsch, H. Telg, S. Reich, C. Thomsen, Phys. Rev. B 72, 205438 (2005)

    Article  ADS  Google Scholar 

  17. P.C. Eklund, J.M. Holden, R.A. Jishi, Carbon 33(7), 959–972 (1995)

    Article  Google Scholar 

  18. S.D.M. Brown, A. Jorio, M.S. Dresselhaus, G. Dresselhaus, Phys. Rev. B 64, 073403 (2001)

    Article  ADS  Google Scholar 

  19. T.A. Yano, T. Ichimura, S. Kuwahara, F.H. Dhili, K. Uetsuki, Y. Okuno, P. Verma, S. Kawata, Nat. Commun. 4, 2592 (2013)

    Article  ADS  Google Scholar 

  20. L.G. Cancado, A. Hartschuhb, L. Novotny, J. Raman Spectrosc. 40, 1420–1426 (2009)

    Article  ADS  Google Scholar 

  21. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  Google Scholar 

  22. B.A. Sellitto, D. Jou, J. Bafaluy, Proc. R. Soc. A 468, 1217 (2011). doi:10.1098/rspa.2011.0584

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded by the United States National Science Foundation (NSF) through Grant No. CMMI-1031574.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwaseyi Balogun.

Additional information

This article is part of the selected papers presented at the 18th International Conference on Photoacoustic and Photothermal Phenomena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Dong, B. & Balogun, O. Near-Field Photothermal Heating with a Plasmonic Nanofocusing Probe. Int J Thermophys 37, 26 (2016). https://doi.org/10.1007/s10765-016-2037-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2037-1

Keywords

Navigation