Advertisement

International Journal of Thermophysics

, Volume 36, Issue 10–11, pp 2666–2673 | Cite as

Microstructures and Thermal Properties of Mg–Sn–Ca Alloys: Casts and Extrusions

  • Jung-Han Kim
  • Jeong-Won Choi
  • Yong-Ho Kim
  • Hyo-Sang Yoo
  • Kee-Do Woo
  • Seong-Hee Lee
  • Hyeon-Taek Son
Article

Abstract

Microstructure and thermal properties of Mg–(3 mass% or 5 mass%) Sn–2 mass% Ca alloys as casts and extrusions have been investigated with different ram speeds and extrusion temperatures. Mg–(3 mass% or 5 mass%) Sn–2 mass% Ca alloys are composed of \(\upalpha \)-Mg, MgSnCa, and \(\hbox {Mg}_{2}\hbox {Ca}\) phases. By adding Sn content from 3 mass% to 5 mass%, the MgSnCa phase is increased and the \(\hbox {Mg}_{2}\hbox {Ca}\) phase is decreased. During hot extrusion, the average grain sizes are increased with increasing ram speed and temperature. The ultimate tensile strength (UTS) and elongation for the Mg–5Sn–2Ca alloy at \(2.3\, \hbox {mm}{\cdot }\hbox {s}^{-1}\) are 227.73 MPa and 18.43 %, respectively. With increasing extrusion ram speed, the UTS and elongation for the Mg–5Sn–2Ca alloy are remarkably decreased to 215.95 MPa, 206.33 MPa, and 14.74 %, 6.88 %, respectively. The thermal conductivity for the Mg–3Sn–2Ca alloy is dramatically improved, compared to commercialized Mg alloys such as AZ31 and AZ91 due to formation of MgSnCa and \(\hbox {Mg}_{2}\hbox {Ca}\) phases.

Keywords

Magnesium alloy Extrusion Microstructures Thermal properties Cast 

References

  1. 1.
    A. Kozlov, M. Ohno, T. Abu Leil, N. Hort, K.U. Kainer, R. Schmid-Fetzer, Intermetallics 16, 316 (2008)CrossRefGoogle Scholar
  2. 2.
    T. Abuleil, N. Hort, W. Dietzel, C. Blawert, Y. Huang, K.U. Kainer, K.P. Rao, Trans. Nonferrous Met. Soc. China 19, 40 (2009)CrossRefGoogle Scholar
  3. 3.
    H. Yu, S.H. Park, B.S. You, Y.M. Kim, H.S. Yu, S.S. Park, Mater. Sci. Eng. A 583, 25 (2013)CrossRefGoogle Scholar
  4. 4.
    D.Q. Li, Q.D. Wang, W.J. Ding, J.J. Blandin, M. Suery, Trans. Nonferrous Met. Soc. China 20, 1311 (2010)CrossRefGoogle Scholar
  5. 5.
    H.T. Son, J.B. Lee, H.G. Jeong, T.J. Konno, Mater. Lett. 65, 1966 (2011)CrossRefGoogle Scholar
  6. 6.
    D. Chen, Y.P. Ren, Y. Guo, W.L. Pei, H.D. Zhao, G.W. Qin, Trans. Nonferrous Met. Soc. China 20, 1321 (2010)CrossRefGoogle Scholar
  7. 7.
    J.W. Yuan, K. Zhang, X. Zhang, X.G. oh, T. Li, Y.J. Li, M.L. Ma, G.L. Shi, J. Alloys Compd. 578, 32 (2013)CrossRefGoogle Scholar
  8. 8.
    J.W. Yuan, K. Zhang, T. Li, X.G. Li, Y.J. Li, M.L. Ma, P. Luo, G.Q. Luo, Y.H. Hao, Mater Design 40, 257 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jung-Han Kim
    • 1
    • 3
  • Jeong-Won Choi
    • 1
    • 2
  • Yong-Ho Kim
    • 1
  • Hyo-Sang Yoo
    • 1
    • 3
  • Kee-Do Woo
    • 2
  • Seong-Hee Lee
    • 3
  • Hyeon-Taek Son
    • 1
  1. 1.Automotive Components R&D GroupKorea Institute of Industrial TechnologyKwangjuRepublic of Korea
  2. 2.Division of Advanced Materials Engineering & RCAMDChonbuk National UniversityJeonjuRepublic of Korea
  3. 3.Department of Advanced Materials Science and EngineeringMokpo National UniversityMuan-gunRepublic of Korea

Personalised recommendations