Advertisement

International Journal of Thermophysics

, Volume 36, Issue 7, pp 1530–1544 | Cite as

Critical Review of Industrial Techniques for Thermal-Conductivity Measurements of Thermal Insulation Materials

  • Ulf Hammerschmidt
  • Jacques Hameury
  • Radek Strnad
  • Emese Turzó-Andras
  • Jiyu Wu
Article

Abstract

This paper presents a critical review of current industrial techniques and instruments to measure the thermal conductivity of thermal insulation materials, especially those insulations that can operate at temperatures above \(250\,^{\circ }\hbox {C}\) and up to \(800~^{\circ }\hbox {C}\). These materials generally are of a porous nature. The measuring instruments dealt with here are selected based on their maximum working temperature that should be higher than at least \(250\,^{\circ }\hbox {C}\). These instruments are special types of the guarded hot-plate apparatus, the guarded heat-flow meter, the transient hot-wire and hot-plane instruments as well as the laser/xenon flash devices. All technical characteristics listed are quoted from the generally accessible information of the relevant manufacturers. The paper includes rankings of the instruments according to their standard retail price, the maximum sample size, and maximum working temperature, as well as the minimum in their measurement range.

Keywords

Guarded heat-flow meter Guarded hot-plate apparatus  High temperature Laser-flash instrument Measuring device Thermal conductivity Thermal insulation material  Transient hot wire Transient plane source 

Notes

Acknowledgments

This work was funded through the European Metrology Research Programme (EMRP) Project SIB 52 Thermo. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

References

  1. 1.
    H.P. Ebert, F. Hemberger, Int. J. Thermophys. 50, 1838 (2011)CrossRefGoogle Scholar
  2. 2.
    Calcarb Rigid Carbon Thermal Insulation, p. 6, http://www.mersen.com/uploads/tx_mersen/3-CALCARB-rigid-carbon-thermal-insulation-mersen_03.pdf. Accessed Mar 2015
  3. 3.
    J. Fricke, U. Heinemann, H.P. Ebert, Vacuum 82, 680 (2008)CrossRefGoogle Scholar
  4. 4.
    R. Baetens, B.P. Jelle, J.V. Thue, M.J. Tenpierik, S. Grynning, S. Uvsløk, A. Gustavsen, Energy Build. 42, 147 (2010)CrossRefGoogle Scholar
  5. 5.
    K. Araki, D. Kamoto, S. Matsuoka, J. Mater. Process. Technol. 209, 271 (2009)CrossRefGoogle Scholar
  6. 6.
    ISO 7345, Thermal Insulation—Physical Quantities and Definitions (International Organization for Standardization-ISO, Geneva, 1996)Google Scholar
  7. 7.
    C.V. Madhusudana, Thermal Contact Conductance (Springer, New York, 1996)CrossRefGoogle Scholar
  8. 8.
    ISO, Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization-ISO, Geneva, 2008)Google Scholar
  9. 9.
    ISO/IEC Guide 98–3:2008, Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995) (International Organization for Standardization-ISO, Geneva, 2008)Google Scholar
  10. 10.
    K.D. Maglic, A. Cezairliyan, V.E. Peletsky (eds.), Compendium of Thermophysical-Property-Measurement Methods, vol. 1 (Plenum Press, New York, 1984)Google Scholar
  11. 11.
    O. Madelung (ed.), Landolt-Börnstein, Units and Fundamental Constants in Physics and Chemistry, Subvolume a: Units in Physics and Chemistry (Springer, Berlin, 1991)Google Scholar
  12. 12.
    T. Ohmura, in Proceedings of ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference, vol. 3 (Vancouver, British Columbia, 2007), pp. 455–463Google Scholar
  13. 13.
    EN 12664, Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Dry and Moist Products of Medium and Low Resistance (Beuth Verlag GmbH, Berlin, 2001)Google Scholar
  14. 14.
    EN 12667, Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Products of High and Medium Thermal Resistance (Beuth Verlag GmbH, Berlin, 2001)Google Scholar
  15. 15.
    “Hot Wire Methods for the Thermal Conductivity Measurement,” http://www.tpl.fpv.ukf.sk/engl_vers/hot_wire.htm
  16. 16.
    J. Kestin, W.A. Wakeham, C.Y. Ho (eds.), CINDAS Data Series on Material Properties, vol. 1–1 (Hemisphere Publishing Corp, New York, 1990)Google Scholar
  17. 17.
    S.E. Gustafsson, Rev. Sci. Instrum. 6, 797 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    T. Baba, A. Ono, Meas. Sci. Technol. 12, 2046 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    ISO 18755:2005, “Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Determination of Thermal Diffusivity of Monolithic Ceramics by Laser Flash Method” (International Organization for Standardization-ISO, Geneva, 2005)Google Scholar
  20. 20.
    T.O.K. Martin, D.R. Salmon, A.C. Taylor, in Thermal Conductivity 24, Proceedings of the 24th International Thermal Conductivity Conference, 1997, ed. by P.S. Gaal, D.E. Apostolescu (Technomic Publishing Co., Lancaster, 1999), pp. 161–172Google Scholar
  21. 21.
    ISO 8302:1991, Thermal Insulation—Determination of Steady-State Thermal Resistance and Related Properties—Guarded Hot Plate Apparatus (International Organization for Standardization-ISO, Geneva, 1991)Google Scholar
  22. 22.
    ISO 8301:1991, Thermal Insulation—Determination of Steady-State Thermal Resistance and Related Properties—Heat Flow Meter Apparatus (International Organization for Standardization-ISO, Geneva, 1991)Google Scholar
  23. 23.
    ISO 8894–1:2010, Refractory Materials—Determination of Thermal Conductivity—Part 1: Hot-Wire Methods (Cross-Array and Resistance Thermometer) (International Organization for Standardization-ISO, Geneva, 2010)Google Scholar
  24. 24.
    ISO 8894–2:2007, Refractory Materials—Determination of Thermal Conductivity—Part 2: Hot-Wire Method (Parallel) (International Organization for Standardization-ISO, Geneva, 2007)Google Scholar
  25. 25.
    ISO 22007–2:2008, Plastics—Determination of Thermal Conductivity and Thermal Diffusivity—Part 2: Transient Plane Heat Source (Hot Disc) Method (International Organization for Standardization-ISO, Geneva, 2008)Google Scholar
  26. 26.
    EN 821–2:1997–11-15, Advanced Technical Ceramics—Monolithic Ceramics—Thermo-Physical Properties. Determination of Thermal Diffusivity by the Laser Flash (or Heat Pulse) Method (Beuth Verlag GmbH, Berlin, 1997)Google Scholar
  27. 27.
    EN 993–15:2005–07, Methods of Test for Dense Shaped Refractory Products—Determination of Thermal Conductivity by the Hot-Wire (Parallel) Method (Beuth Verlag GmbH, Berlin, 2005)Google Scholar
  28. 28.
    EN 1946–2:1999, Thermal Performance of Building Products and Components—Specific Criteria for the Assessment of Laboratories Measuring Heat Transfer Properties—Part 2: Measurements by the Guarded Hot Plate Method (Beuth Verlag GmbH, Berlin, 1999)Google Scholar
  29. 29.
    EN 1946–3:1999–04, Thermal Performance of Building Products and Components—Specific Criteria for the Assessment of Laboratories Measuring Heat Transfer Properties—Part 3: Measurements by the Guarded Heat Flow Meter Method (Beuth Verlag GmbH, Berlin, 1999)Google Scholar
  30. 30.
    EN 12939:2001–02, Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Thick Products of High and Medium Thermal Resistance (Beuth Verlag GmbH, Berlin, 2001)Google Scholar
  31. 31.
    ASTM C177–13, Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded Hot Plate (American Society for Testing and Materials, West Conshohocken, PA, 2013)Google Scholar
  32. 32.
    ASTM C518–10, Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus (American Society for Testing and Materials, West Conshohocken, PA, 2010)Google Scholar
  33. 33.
    ASTM C1113/C1113M-09(2013), Standard Test Method for Thermal Conductivity of Refractories by Hot Wire (Platinum Resistance Thermometer Technique) (American Society for Testing and Materials, West Conshohocken, PA, 2013)Google Scholar
  34. 34.
    ASTM E1461–13, Standard Test Method for Thermal Diffusivity by the Flash Method (American Society for Testing and Materials, West Conshohocken, PA, 2013)Google Scholar
  35. 35.
    JIS A1412–1, Test Method for Thermal Resistance and Related Properties of Thermal Insulations—Guarded Hot Plate Apparatus (SAI Global, München, 1999)Google Scholar
  36. 36.
    JIS A1412–2, Test Method for Thermal Resistance and Related Properties of Thermal Insulations—Heat Flow Meter Apparatus (SAI Global, München, 1999)Google Scholar
  37. 37.
    A.B. Hotdisk (Gothenburg) (2015), http://www.hotdiskinstruments.com
  38. 38.
    LaserComp Inc. (Saugus, MA) (2015), http://www.lasercomp.com
  39. 39.
    Linseis Messgeräte GmbH (Selb) (2015), http://www.linseis.com
  40. 40.
    Netzsch-Gerätebau GmbH (Selb) (2015), http://www.netzsch-thermal-analysis.com
  41. 41.
    Taurus Instruments GmbH (Weimar) (2015), http://www.taurus-instruments.de
  42. 42.
    TA Instruments (New Castle, DE) (2015), http://www.tainstruments.com
  43. 43.
    ULVAC-RIKO (Yokohama) (2015), http://www.ulvav.co.jp

Copyright information

© European Union 2015

Authors and Affiliations

  • Ulf Hammerschmidt
    • 1
  • Jacques Hameury
    • 2
  • Radek Strnad
    • 3
  • Emese Turzó-Andras
    • 4
  • Jiyu Wu
    • 5
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany
  2. 2.Laboratoire National de Métrologie et d’EssaisParisFrance
  3. 3.Český Metrologický Institut BrnoBrnoCzech Republic
  4. 4.Magyar Kereskedelmi Engedélyezési HivatalBudapestHungary
  5. 5.National Physical LaboratoryTeddington, MiddlesexUK

Personalised recommendations