Advertisement

International Journal of Thermophysics

, Volume 36, Issue 9, pp 2441–2451 | Cite as

Alternative Calorimetry Based on the Photothermoelectric (PTE) Effect: Application to Magnetic Nanofluids

  • Dorin Dadarlat
  • Patrick R. N. Misse
  • Antoine Maignan
  • Emmanuel Guilmeau
  • Rodica Turcu
  • Ladislau Vekas
  • Cristian Tudoran
  • Michael Depriester
  • Abdelhak Hadj Sahraoui
Article

Abstract

Photothermoelectric (PTE) calorimetry was applied for the first time for thermal characterization of liquids. Both back and front detection configurations, together with the thermal-wave resonator cavity (TWRC) scanning procedure, have been used in order to measure the thermal diffusivity and thermal effusivity of a particular magnetic nanofluid: carrier liquid—transformer oil, surfactant—oleic acid, nanoparticles’ type—\(\hbox {Fe}_{3}\hbox {O}_{4}\).The investigations were performed as a function of the nanoparticles’ concentration. Small increases of thermal diffusivity (from \(9.06\times 10^{-8}\,\hbox {m}^{2}{\cdot } \hbox {s}^{-1}\) up to \(9.84\times 10^{-8}\,\hbox {m}^{2}{\cdot } \hbox {s}^{-1})\) and thermal effusivity (from \(450\,\hbox {W}{\cdot } \hbox {s}^{1/2}{\cdot } \hbox {m}^{-2}{\cdot } \hbox {K}^{-1}\) up to \(520\,\hbox {W}{\cdot } \hbox {s}^{1/2}{\cdot } \hbox {m}^{-2}{\cdot } \hbox {K}^{-1})\) with increasing concentration of \(\hbox {Fe}_{3}\hbox {O}_{4}\) nanoparticles (from 0 up to 0.623 mg \(\hbox {Fe}_{3}\hbox {O}_{4}/\hbox {ml}\) fluid) were observed. The comparison with the photopyroelectric (PPE) method shows that PTE and PPE give similar results but, for the moment, PPE is more accurate.

Keywords

Magnetic nanofluids PPE calorimetry PTE calorimetry Thermal parameters TWRC method 

Notes

Acknowledgments

Work supported in part by the Romanian Ministry of Education and Research Youth and Sport, through the National Research Programs, PN-II-ID-PCE-2011-3-0036, PN-II-PT-PCCA-2011-3.2-1419, and PN-II-RU-PD-2012-3-0270.

References

  1. 1.
    A. Mandelis, Principles and Perspectives of Photothermal and Photoacoustic Phenomena (Elsevier, New York, 1992)Google Scholar
  2. 2.
    A. Mandelis, M.M. Zver, J. Appl. Phys. 57, 4421 (1985)CrossRefADSGoogle Scholar
  3. 3.
    M. Chirtoc, G. Mihailescu, Phys. Rev. B 40, 9606 (1989)CrossRefADSGoogle Scholar
  4. 4.
    D. Dadarlat, C. Neamtu, Acta. Chim. Slovenica 56, 225 (2009)Google Scholar
  5. 5.
    D. Dadarlat, M. Streza, M. Pop, V. Tosa, S. Delenclos, S. Longuemart, A.H. Sahraoui, J. Therm. Anal. Calorim. 101, 397 (2010)CrossRefGoogle Scholar
  6. 6.
    M. Kuriakose, M. Depriester, R.C.Y. King, F. Rousel, A.H. Sahraoui, J. Appl. Phys. 113, 044502 (2013)CrossRefADSGoogle Scholar
  7. 7.
    D. Dadarlat, M. Streza, R.C.Y. King, F. Rousel, M. Kuriakose, M. Depriester, E. Guilmeau, A.H. Sahraoui, Meas. Sci. Technol. 25, 015603 (2014)CrossRefADSGoogle Scholar
  8. 8.
    J. Shen, A. Mandelis, Rev. Sci. Instrum. 66, 4999 (1995)CrossRefADSGoogle Scholar
  9. 9.
    L.A. Balderas-Lopez, A. Mandelis, J.A. Garcia, Rev. Sci. Instrum. 71, 2933 (2000)CrossRefADSGoogle Scholar
  10. 10.
    L.A. Balderas-Lopez, A. Mandelis, Rev. Sci. Instrum. 74, 700 (2003)CrossRefADSGoogle Scholar
  11. 11.
    M. Marinelli, F. Mercuri, U. Zammit, R. Pizzoferrato, F. Scudieri, D. Dadarlat, Phys. Rev. B 49, 9523 (1994)CrossRefADSGoogle Scholar
  12. 12.
    D. Dadarlat, Laser Phys. 19, 1330 (2009)CrossRefADSGoogle Scholar
  13. 13.
    S. Delenclos, D. Dadarlat, N. Houriez, S. Longuermart, C. Kolinsky, A.H. Sahraoui, Rev. Sci. Instrum. 78, 024902 (2007)CrossRefADSGoogle Scholar
  14. 14.
    D. Dadarlat, M.N. Pop, Int. J. Therm. Sci. 56, 19 (2012)CrossRefGoogle Scholar
  15. 15.
    L. Vekas, M.V. Avdeev, D. Bica, in NanoScience Biomedicine, ed. by D. Shi (Springer, New York, 2009), pp. 645–711Google Scholar
  16. 16.
    D. Dadarlat, C. Neamtu, M. Streza, R. Turcu, I. Craciunescu, D. Bica, L. Vekas, J. Nanopart. Res. 10, 1329 (2008)CrossRefGoogle Scholar
  17. 17.
    D. Dadarlat, S. Longuemart, R. Turcu, M. Streza, L. Veka, A.H. Sahraoui, Int. J. Thermophys. 35, 2032 (2013). doi: 10.1007/s10765-013-1549-1 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Dorin Dadarlat
    • 1
  • Patrick R. N. Misse
    • 2
  • Antoine Maignan
    • 2
  • Emmanuel Guilmeau
    • 2
  • Rodica Turcu
    • 1
  • Ladislau Vekas
    • 3
  • Cristian Tudoran
    • 1
  • Michael Depriester
    • 4
    • 5
    • 6
  • Abdelhak Hadj Sahraoui
    • 4
    • 5
    • 6
  1. 1.National R&D Institute for Isotopic and Molecular TechnologiesCluj-NapocaRomania
  2. 2.Laboratoire CRISMAT, UMR6508 CNRS/ENSICAENCaen Cedex 4France
  3. 3.Laboratory of Magnetic FluidsRomanian AcademyTimisoaraRomania
  4. 4.Univ. Lille Nord de FranceLilleFrance
  5. 5.ULCO, UDSMMDunkerqueFrance
  6. 6.Unité de Dynamique et Structure des Materiaux MoléculairesDunkerqueFrance

Personalised recommendations