Skip to main content
Log in

Alternative Calorimetry Based on the Photothermoelectric (PTE) Effect: Application to Magnetic Nanofluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Photothermoelectric (PTE) calorimetry was applied for the first time for thermal characterization of liquids. Both back and front detection configurations, together with the thermal-wave resonator cavity (TWRC) scanning procedure, have been used in order to measure the thermal diffusivity and thermal effusivity of a particular magnetic nanofluid: carrier liquid—transformer oil, surfactant—oleic acid, nanoparticles’ type—\(\hbox {Fe}_{3}\hbox {O}_{4}\).The investigations were performed as a function of the nanoparticles’ concentration. Small increases of thermal diffusivity (from \(9.06\times 10^{-8}\,\hbox {m}^{2}{\cdot } \hbox {s}^{-1}\) up to \(9.84\times 10^{-8}\,\hbox {m}^{2}{\cdot } \hbox {s}^{-1})\) and thermal effusivity (from \(450\,\hbox {W}{\cdot } \hbox {s}^{1/2}{\cdot } \hbox {m}^{-2}{\cdot } \hbox {K}^{-1}\) up to \(520\,\hbox {W}{\cdot } \hbox {s}^{1/2}{\cdot } \hbox {m}^{-2}{\cdot } \hbox {K}^{-1})\) with increasing concentration of \(\hbox {Fe}_{3}\hbox {O}_{4}\) nanoparticles (from 0 up to 0.623 mg \(\hbox {Fe}_{3}\hbox {O}_{4}/\hbox {ml}\) fluid) were observed. The comparison with the photopyroelectric (PPE) method shows that PTE and PPE give similar results but, for the moment, PPE is more accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Mandelis, Principles and Perspectives of Photothermal and Photoacoustic Phenomena (Elsevier, New York, 1992)

    Google Scholar 

  2. A. Mandelis, M.M. Zver, J. Appl. Phys. 57, 4421 (1985)

    Article  ADS  Google Scholar 

  3. M. Chirtoc, G. Mihailescu, Phys. Rev. B 40, 9606 (1989)

    Article  ADS  Google Scholar 

  4. D. Dadarlat, C. Neamtu, Acta. Chim. Slovenica 56, 225 (2009)

    Google Scholar 

  5. D. Dadarlat, M. Streza, M. Pop, V. Tosa, S. Delenclos, S. Longuemart, A.H. Sahraoui, J. Therm. Anal. Calorim. 101, 397 (2010)

    Article  Google Scholar 

  6. M. Kuriakose, M. Depriester, R.C.Y. King, F. Rousel, A.H. Sahraoui, J. Appl. Phys. 113, 044502 (2013)

    Article  ADS  Google Scholar 

  7. D. Dadarlat, M. Streza, R.C.Y. King, F. Rousel, M. Kuriakose, M. Depriester, E. Guilmeau, A.H. Sahraoui, Meas. Sci. Technol. 25, 015603 (2014)

    Article  ADS  Google Scholar 

  8. J. Shen, A. Mandelis, Rev. Sci. Instrum. 66, 4999 (1995)

    Article  ADS  Google Scholar 

  9. L.A. Balderas-Lopez, A. Mandelis, J.A. Garcia, Rev. Sci. Instrum. 71, 2933 (2000)

    Article  ADS  Google Scholar 

  10. L.A. Balderas-Lopez, A. Mandelis, Rev. Sci. Instrum. 74, 700 (2003)

    Article  ADS  Google Scholar 

  11. M. Marinelli, F. Mercuri, U. Zammit, R. Pizzoferrato, F. Scudieri, D. Dadarlat, Phys. Rev. B 49, 9523 (1994)

    Article  ADS  Google Scholar 

  12. D. Dadarlat, Laser Phys. 19, 1330 (2009)

    Article  ADS  Google Scholar 

  13. S. Delenclos, D. Dadarlat, N. Houriez, S. Longuermart, C. Kolinsky, A.H. Sahraoui, Rev. Sci. Instrum. 78, 024902 (2007)

    Article  ADS  Google Scholar 

  14. D. Dadarlat, M.N. Pop, Int. J. Therm. Sci. 56, 19 (2012)

    Article  Google Scholar 

  15. L. Vekas, M.V. Avdeev, D. Bica, in NanoScience Biomedicine, ed. by D. Shi (Springer, New York, 2009), pp. 645–711

    Google Scholar 

  16. D. Dadarlat, C. Neamtu, M. Streza, R. Turcu, I. Craciunescu, D. Bica, L. Vekas, J. Nanopart. Res. 10, 1329 (2008)

    Article  Google Scholar 

  17. D. Dadarlat, S. Longuemart, R. Turcu, M. Streza, L. Veka, A.H. Sahraoui, Int. J. Thermophys. 35, 2032 (2013). doi:10.1007/s10765-013-1549-1

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Work supported in part by the Romanian Ministry of Education and Research Youth and Sport, through the National Research Programs, PN-II-ID-PCE-2011-3-0036, PN-II-PT-PCCA-2011-3.2-1419, and PN-II-RU-PD-2012-3-0270.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Tudoran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadarlat, D., Misse, P.R.N., Maignan, A. et al. Alternative Calorimetry Based on the Photothermoelectric (PTE) Effect: Application to Magnetic Nanofluids. Int J Thermophys 36, 2441–2451 (2015). https://doi.org/10.1007/s10765-015-1855-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1855-x

Keywords

Navigation