Skip to main content

Advertisement

Log in

Experimental Comparison Among Thermal Characteristics of Three Metal Oxide Nanoparticles/Turbine Oil-Based Nanofluids Under Laminar Flow Regime

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate heat transfer characteristics of turbine oil-based nanofluids inside a circular tube in laminar flow under a constant heat flux boundary condition. Oil-based nanofluids were prepared dispersing less than 1 % volume concentrations of CuO, \(\hbox {TiO}_{2}\), and \(\hbox {Al}_{2}\hbox {O}_{3}\) nanoparticles in turbine oil using a two-step method. The primary objective was to evaluate and compare the effect of different volume concentrations and nanoparticle types on convective heat transfer. An experimental apparatus was designed and constructed to measure the heat transfer coefficient and the Nusselt number of the samples. Due to the high Prandtl number of the nanofluids (about 350), it was concluded that the nanofluids were in the developing region. Experimental results clearly indicated that all of the added nanoparticles improved both the heat transfer coefficient and the Nusselt number of the turbine oil. A nanofluid is more capable than a single-phase fluid insofar as removing heat from high heat flux surfaces. The highest values of the Nusselt number and the Nusselt number ratio (the ratio of the nanofluid Nusselt number to that of the pure turbine oil) belonged to the CuO/turbine oil nanofluid. Among the sample nanofluids, the highest Nusselt number ratios belonged to CuO/turbine oil (0.50 %), \(\hbox {TiO}_{2}\)/turbine oil (0.50 %), \(\hbox {Al}_{2}\hbox {O}_{3}\)/turbine oil (0.50 %), and a Reynolds number of about 800 which were 1.38, 1.31, and 1.15, respectively. Moreover, so as to determine the efficiency of a nanofluid, the ratio of the pressure drop and Nusselt number of three nanofluid samples were compared with that of the base fluid. A third parameter (performance index) was evaluated to determine the possibility of practically using such for rating nanofluids. All the obtained performance indexes for CuO/turbine oil and \(\hbox {TiO}_{2}\)/turbine oil were more than one, meaning the employment of such nanofluids leads to a higher quality turbine oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://behranoil.iranrugco.com/en/productnew/Default.aspx.

Abbreviations

\(A\) :

Surface area \((\hbox {m}^{2})\)

\(C_{p}\) :

Specific heat \((\hbox {J}{\cdot }\hbox {kg}^{-1}{\cdot } \hbox {K}^{-1})\)

\(D\) :

Tube diameter (m)

\(Gz\) :

Graetz number

\(h\) :

Heat transfer coefficient \((\hbox {W}{\cdot } \hbox {m}^{-2}{\cdot } \hbox {K}^{-1})\)

\(\overline{h}\) :

Average heat transfer coefficient \((\hbox {W}{\cdot } \hbox {m}^{-2}{\cdot } \hbox {K}^{-1})\)

\(I\) :

Current (A)

\(k\) :

Thermal conductivity \((\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1})\)

\(L\) :

Tube length (m)

\(m\) :

Mass in suspension (kg)

\(\dot{m}\) :

Mass flow rate \((\hbox {kg}{\cdot } \hbox {s}^{-1})\)

Nu :

Nusselt number

\(\overline{Nu}\) :

Average Nusselt number

Pr :

Prandtl number

\(Q\) :

Heat transfer rate (W)

\(\dot{q}\) :

Heat flux \((\hbox {W}{\cdot } \hbox {m}^{-2})\)

\(R\) :

Parameter

Ra :

Rayleigh number

Re :

Reynolds number

\(T\) :

Temperature (K)

\(u\) :

Uncertainty

\(V\) :

Voltage (V)

Vol :

Volume \((\hbox {m}^{3})\)

\(\overline{V}\) :

Fluid flow rate \((\hbox {m}^{3}{\cdot } \hbox {s}^{-1})\)

\(x\) :

Experimental measured variable

\(z\) :

Axial distance (m)

\(\delta \) :

Boltzmann constant \((\hbox {W}{\cdot } \hbox {m}^{-2}{\cdot } \hbox {K}^{-4})\)

\(\varepsilon \) :

Emission factor

\(\beta \) :

Ratio of the nanolayer thickness to the original particle radius

\(\Delta p\) :

Pressure drop (Pa)

\(\phi \) :

Volume concentration

\(\mu \) :

Fluid viscosity (\(\hbox {Pa}{\cdot } \hbox {s}\))

\(\rho \) :

Density \((\hbox {kg}{\cdot } \hbox {m}^{-3})\)

\(\eta \) :

Performance index

b:

Bulk

bf:

Base fluid

conv:

Convection

\(d\) :

Manometer liquid height (m)

f:

Fluid

in:

Inlet

ins:

Insulation

l:

Manometer liquid

loss:

Loss to the atmosphere

M:

Average

nf:

Nanofluid

out:

Outlet

p:

Nanoparticles

pure oil:

Pure turbine oil

rad:

Radiation

surr:

Surrounding

\(t\) :

Time (s)

tot:

Total

w:

Wall

wnf:

Nanofluid at wall temperature

References

  1. S.U.S. Choi, Developments and Applications of Non-Newtonian Flows, vol. 231, ed. by D.A. Singer, H.P. Wang (American Society of Mechanical Engineers, New York, 1995), pp. 99–105

  2. A.M. Hussein, K.V. Sharma, R.A. Bakar, K. Kadirgama, Renew. Sustain. Energy Rev. 29, 734 (2014)

    Article  Google Scholar 

  3. Y. Yanjiao Li, J. Jing’en Zhou, S. Simon Tung, E. Schneider, S. Xi, Powder Technol. 196, 89 (2009)

    Article  Google Scholar 

  4. D. Wen, Y. Ding, Int. J. Heat Fluid Flow 26, 855 (2005)

    Article  Google Scholar 

  5. Y. Xuan, Q. Li, Int. J. Heat Fluid Flow 21, 58 (2000)

    Article  Google Scholar 

  6. W. Duangthongsuk, S. Wongwises, Int. J. Heat Mass Transf. 53, 334 (2010)

    Article  Google Scholar 

  7. M. Hojjat, S.G. Etemad, R. Bagheri, J. Thibault, Int. J. Therm. Sci. 50, 525 (2011)

    Article  Google Scholar 

  8. P. Hu, W.L. Shan, F. Yu, Z.S. Chen, Int. J. Thermophys. 29, 1968 (2008)

    Article  ADS  Google Scholar 

  9. M. Saeedinia, M.A. Akhavan-Behabadi, P. Razi, Int. Commun. Heat Mass Transf. 39, 152 (2011)

    Article  Google Scholar 

  10. S.M. Hashemi, M.A. Akhavan-Behabadi, Int. Commun. Heat Mass Transf. 39, 144 (2012)

    Article  Google Scholar 

  11. B.C. Pak, Y.I. Cho, Exp. Heat Transf. 11, 2 (1998)

    Article  Google Scholar 

  12. S. Zeinali Heris, M. Borhani Pour, O. Mahian, S. Wongwises, Int. J. Heat Mass Transf. 73, 231 (2014)

    Article  Google Scholar 

  13. F. Farzin, S. Zeinali Heris, S. Rahim, J. Thermophys. Heat Transf. 27, 127 (2013)

    Article  Google Scholar 

  14. U. Rea, T. McKrell, L.W. Hu, J. Buongiorno, Int. J. Heat Mass Transf. 52, 2042 (2009)

    Article  Google Scholar 

  15. A. Mokmeli, M. Saffar-Avval, Int. J. Therm. Sci. 49, 471 (2010)

    Article  Google Scholar 

  16. Y. Xuan, Q. Li, J. Heat Transf. 125, 151 (2003)

    Article  Google Scholar 

  17. D. Wen, Y. Ding, Int. J. Heat Mass Transf. 47, 5181 (2004)

    Article  Google Scholar 

  18. H. Chen, W. Yang, Y. He, Y. Ding, L. Zhang, C. Tan, A.A. Lapkin, D.V. Bavykin, Powder Technol. 183, 63 (2008)

    Article  Google Scholar 

  19. Y. Ding, H. Alias, D. Wen, A.R. Williams, Int. J. Heat Mass Transf. 49, 240 (2006)

    Article  Google Scholar 

  20. P. Selvakumar, S. Suresh, Exp. Therm. Fluid Sci. 40, 57 (2012)

    Article  Google Scholar 

  21. M. Kalteh, A. Abbassi, M. Saffar-Avval, J. Harting, Int. J. Heat Fluid Flow 32, 107 (2011)

    Article  Google Scholar 

  22. M.A. Akhavan-Behabadi, M.F. Pakdaman, M. Ghazvini, Int. Commun. Heat Mass Transf. 39, 556 (2012)

    Article  Google Scholar 

  23. S.W. Churchill, H.H.S. Chu, Int. J. Heat Mass Transf. 18, 1323 (1975)

    Article  Google Scholar 

  24. R.L. Hamilton, O.K. Crosser, Ind. Eng. Chem. Fundam. 1, 187 (1962)

    Article  Google Scholar 

  25. W. Yu, S.U.S. Choi, J. Nanopart. Res. 5, 167 (1962)

    Article  Google Scholar 

  26. X. Wang, X. Xu, S.U.S. Choi, J. Thermophys. Heat Transf. 13, 474 (1999)

    Article  Google Scholar 

  27. W. Duangthongsuk, S. Wongwises, Exp. Therm. Fluid Sci. 34, 616 (2010)

    Article  Google Scholar 

  28. P. Tillman, J.M. Hill, Int. Commun. Heat Mass Transfer 34, 399 (2007)

    Article  Google Scholar 

  29. B. Ravi Sankar, D. Nageswara Rao, C. Srinivasa Rao, Int. J. Adv. Eng. Technol. 5, 13 (2012)

    Google Scholar 

  30. K.K. Liang Peter, A Study on the Heat Transfer of Nanofluids in Pipes, Heat and Mass Transport, Project Report MVK160 (Lund University, Lund, 2014)

  31. M. Izadi, S. Hossainpour, D. Jalali-Vahid, Int. J. Mech. Ind. Aerosp. Eng. 3, 201 (2009)

    Google Scholar 

  32. J.P. Holman, Experimental Methods for Engineers, 7th edn. (McGraw-Hill Education, New York, 2001)

    Google Scholar 

  33. H.D. Young, Statistical Treatment of Experimental Data (McGraw-Hill Education, New York, 2001)

    Google Scholar 

  34. E.N. Sieder, G.E. Tate, Ind. Eng. Chem. Res. 28, 1429 (1936)

    Article  Google Scholar 

  35. K.B. Anoop, T. Sundararajan, S.K. Das, Int. J. Heat Mass Transf. 52, 2189 (2009)

    Article  MATH  Google Scholar 

  36. S. Mirmasoumi, A. Behzadmehr, Int. J. Heat Fluid Flow 29, 557 (2008)

    Article  Google Scholar 

  37. P. Razi, M.A. Akhavan-Behabadi, M. Saeedinia, Int. Commun. Heat Mass Transf. 38, 964 (2011)

    Article  Google Scholar 

  38. S. Zeinali Heris, A. Kazemi-Beydokhti, S.H. Noie, S. Rezvan, Eng. Appl. Comput. Fluid Mech. 6, 1 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nano Research Center of Iran for financially supporting this Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Zeinali Heris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heris, S.Z., Farzin, F. & Sardarabadi, H. Experimental Comparison Among Thermal Characteristics of Three Metal Oxide Nanoparticles/Turbine Oil-Based Nanofluids Under Laminar Flow Regime. Int J Thermophys 36, 760–782 (2015). https://doi.org/10.1007/s10765-015-1852-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1852-0

Keywords

Navigation