Advertisement

International Journal of Thermophysics

, Volume 36, Issue 5–6, pp 1320–1326 | Cite as

Theoretical Analysis of Nonlinear Recombination Process and Its Influence on Diffraction Efficiency of Steady-State Photocarrier Grating

  • H. Cui
  • Y. F. Wang
  • C. M. Gao
  • Q. M. Sun
Article

Abstract

A theoretical analysis of the steady-state photocarrier grating (SSPCG), which takes the nonlinear carrier recombination processes into account, has been presented. First, the nonlinear diffusion equation, containing the bimolecular radiative recombination and Auger recombination terms, has been numerically solved, and the spatial distribution of the carrier concentration of the SSPCG has been obtained. Second, using Fourier analysis, the amplitude of the carrier concentration is determined based on the numerical results. Finally, using the band-filling theory and rigorous coupled-wave analysis, all the optical parameters of the SSPCG are determined and the diffraction efficiency is estimated. The results show that, for an InP-based SSPCG, the bimolecular radiative recombination plays a dominant role in the diffusion equation at a given excitation level. The +1st-order diffraction efficiency of the SSPCG increased less by the increase of the grating period, and the rising rate was reduced by it. In spite of the diffraction efficiency (about 0.7 %), it has the potential to be an optical signal processing component.

Keywords

Diffraction efficiency Nonlinear recombination Steady-state photocarrier grating 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61379013) and the Central-University Basic Research Fund of UESTC (Grant No. ZYGX2012Z006).

References

  1. 1.
    X.R. Zhang, B.C. Li, C.M. Gao, Appl. Phys. Lett. 89, 112120 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Q.M. Sun, Y.F. Wang, C.M. Gao, Y. Wan, Int. J. Thermophys. 33, 2103 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    H.J. Eichler, Adv. Solid State Phys. 18, 241 (1978)Google Scholar
  4. 4.
    H.J. Eichler, F. Massmann, J. Appl. Phys. 53, 3237 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    H.J. Eichler, F. Massmann, E. Biselli, K. Richter, M. Glotz, L. Konetzke, X. Yang, Phys. Rev. B 36, 3247 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    D. Ritter, E. Zeldov, K. Weiser, Appl. Phys. Lett. 49, 791 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    D. Ritter, E. Zeldov, K. Weiser, J. Appl. Phys. 62, 4563 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    I. Balberg, J. Appl. Phys. 67, 6329 (1990)ADSCrossRefGoogle Scholar
  9. 9.
  10. 10.
    D. Guidotti, J.S. Batchelder, A. Finkel, Phys. Rev. B 38, 1569 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    B.R. Bennett, R.A. Soref, J.A. Del Alamo, IEEE J. Quantum Electron. 26, 113 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    M.G. Moharam, E.B. Grann, D.A. Pommet, J. Opt. Soc. Am. A 12, 1068 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Optoelectronic InformationUniversity of Electronic Science and Technology of ChinaChengdu China

Personalised recommendations