Advertisement

International Journal of Thermophysics

, Volume 36, Issue 4, pp 633–647 | Cite as

Experimental Study of Thermal Diffusion in Multicomponent Gaseous Systems

  • Alexander Fyodorovich Bogatyrev
  • Olga Andreevna Makeenkova
  • Maria Alexandrovna Nezovitina
Article

Abstract

Thermal diffusion factor (TDF) measurements were performed for one quaternary, for four ternary, and for six binary gaseous systems, containing \(\hbox {H}_{2}, \, \hbox {CH}_{4}, \, \hbox {N}_{2}\), and \(\hbox {CO}_{2}\) held under atmospheric pressure and at cold- and hot-chamber temperatures of \(T_{1}\) = 280 K and \(T_{2}\) = 800 K, respectively. For the multicomponent gas mixtures, measurements were made at different values of the mole fraction of the additive. Also, the dependence of the TDF values on the mole fraction of the additive for the multicomponent mixtures was analyzed. A semi-empirical formula to calculate TDF values was proposed; this formula gives results that are in good agreement with experimental data within the respective limits of error.

Keywords

Binary gaseous system Experiment Multicomponent gas Thermal diffusion factor Thermal diffusion separation  Two-bulb method mixture 

List of Symbols

BV

Ballast vessel

\(K_{ij }\)

Empirical coefficient

\(k_{Tij} \)

Thermodiffusion ratio

\(m_{i}\)

mass of molecular of gas \(i \)(g\(\cdot \)mol\(^{-1})\)

\(p \)

Gas pressure (MPa)

\(q_{ij}\)

Separation factor

SD

Separation device

\(T_{1}, \, T_{2}\)

Gas temperature of cold and hot areas of gas (K)

TDF

Thermal diffusion factor

TGP

Thermal gravitational pump

\(x_{ij}^{\mathrm{bin}}\)

Mole fraction of component \(i\) in binary \(i-j\) mixture

\(x_i^{\mathrm{mlt}}\)

Mole fraction of component \(i\) in multicomponent mixture

\(x_{iT}^{\mathrm{mlt}}\)

Mole fraction of component \(i\) in multicomponent mixture at temperature \(T\)

\(\alpha _{Tij}^{\mathrm{bin}}\)

Thermal diffusion factor in binary mixture of gases \(i\) and \(j\)

\(\alpha _{Tij}^{\mathrm{mlt}}\)

Thermal diffusion factor for components \(i\) and \(j\) in multicomponent gas mixture

\(\Delta x_{ij}^{\mathrm{bin}}\)

Mole fraction change of component \(i\) in binary \(i-j\) mixture

\(\Delta x_i^{\mathrm{mlt}}\)

Mole fraction change of component \(i\) in multicomponent gas mixture

\(\varepsilon \)

Relative experimental error (%)

Notes

Acknowledgments

This work was performed with financial support from the Ministry of Education and Science of the Russian Federation.

References

  1. 1.
    J. Chipman, M.N. Dastur, J. Chem. Phys. 16, 636 (1948). doi: 10.1063/1.1746963 CrossRefADSGoogle Scholar
  2. 2.
    M.F. Laranjeira, J. Kistemaker, Physica 26, 431 (1960). doi: 10.1016/0031-8914(60)90032-X CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    F. Van der Volk, Physica 29, 417 (1963). doi: 10.1016/S0031-8914(63)80153-6 CrossRefADSGoogle Scholar
  4. 4.
    F. Van der Volk, A.E. De Vries, Physica 29, 427 (1963). doi: 10.1016/S0031-8914(63)80154-8 CrossRefADSGoogle Scholar
  5. 5.
    S.K. Deb, A.K. Barua, Phys. Fluids 10, 992 (1967). doi: 10.1063/1.1762252 CrossRefADSGoogle Scholar
  6. 6.
    S.K. Deb, A.K. Barua, Physica 34, 438 (1967). doi: 10.1016/0031-8914(67)90011-0 CrossRefADSGoogle Scholar
  7. 7.
    S.K. Deb, A.K. Barua, Trans. Faraday Soc. 64, 358 (1968). doi: 10.1039/TF9686400358 CrossRefGoogle Scholar
  8. 8.
    A.K. Ghosh, A.K. Batabyal, A.K. Barua, J. Chem. Phys. 47, 3704 (1967). doi: 10.1063/1.1701523 CrossRefADSGoogle Scholar
  9. 9.
    A.F. Bogatyrev, S.N. Gudomenko, N.D. Kosov, V.F. Kryuchkov, E.E. Makletsova, Diffusion in Gases and Fluids (Kaz-GU, Alma-Ata, 1974). [in Russian]Google Scholar
  10. 10.
    A.F. Bogatyrev, V.F. Kryuchkov, Applied and Theoretical Physics (Kaz-GU, Alma-Ata, 1974). [in Russian]Google Scholar
  11. 11.
    A.F. Bogatyrev, V.F. Kryuchkov, Applied and Theoretical Physics (Kaz-GU, Alma-Ata, 1977). [in Russian]Google Scholar
  12. 12.
    A.F. Bogatyrev, YuI Zhavrin, N.D. Kosov, V.F. Kryuchkov, Heat Transf. Sov. Res. 10, 38 (1978)Google Scholar
  13. 13.
    L. Monchick, K.S. Yun, E.A. Mason, J. Chem. Phys. 39, 654 (1963). doi: 10.1063/1.1734304 CrossRefADSGoogle Scholar
  14. 14.
    L. Monchick, A.N.G. Pereira, E.A. Mason, J. Chem. Phys. 42, 3241 (1965). doi: 10.1063/1.1696406 CrossRefADSGoogle Scholar
  15. 15.
    S.K. Deb, A.K. Ghosh, A.K. Barua, J. Phys. B 2, 715 (1969). doi: 10.1088/0022-3700/2/6/311 CrossRefADSGoogle Scholar
  16. 16.
    J. Sielanko, Postepy Poland Fiz. 23, 271 (1972). [in Polish]Google Scholar
  17. 17.
    J.M. Kincaid, E.G.D. Cohen, M.J. López de Haro, Chem. Phys. 86, 963 (1987). doi: 10.1063/1.452243 ADSGoogle Scholar
  18. 18.
    J. Bzowski, J. Kestin, E.A. Mason, F.J. Uribe, J. Phys. Chem. Ref. Data 19, 1179 (1990). doi: 10.1063/1.555867 CrossRefADSGoogle Scholar
  19. 19.
    N. Kobayashi, I. Yamamoto, J. Nucl. Sci. Technol. 32, 1236 (1995). doi: 10.1080/18811248.1995.9731846 CrossRefGoogle Scholar
  20. 20.
    L.J.T.M. Kempers, J. Chem. Phys. 115, 6330 (2001). doi: 10.1063/1.1398315 CrossRefADSGoogle Scholar
  21. 21.
    D. Omeiri, D.E. Djafri, Int. J. Thermophys. 31, 1111 (2010). doi: 10.1007/s10765-010-0771-3 CrossRefADSGoogle Scholar
  22. 22.
    K.E. Grew, T.L. Ibbs, Thermal Diffusion in Gases (Cambridge University Press, Cambridge, 1952)zbMATHGoogle Scholar
  23. 23.
    A.F. Bogatyrev, S.N. Gudomenko, Applied and Theoretical Physics (Kaz-GU, Alma-Ata, 1977). [in Russian]Google Scholar
  24. 24.
    A.F. Bogatyrev, M.A. Nezovitina, Sci. Rev. 2, 123 (2012). [in Russian]Google Scholar
  25. 25.
    A.F. Bogatyrev, V.R. Belalov, M.A. Nezovitina, J. Eng. Phys. Thermophys. 86, 1225 (2013). doi: 10.1007/s10891-013-0945-5 CrossRefGoogle Scholar
  26. 26.
    A.F. Bogatyrev, V.R. Belalov, O.A. Kulikova, in XXV—International Scientific Conference on Mathematical Methods in Technics and Technology—MMTT-25, vol. 9 (Saratov, Russia, 2012), p. 70 [in Russian].Google Scholar
  27. 27.
    A.F. Bogatyrev, O.A. Kulikova, Sci. Rev. 3, 160 (2012). [in Russian]Google Scholar
  28. 28.
    L. Waldmann, in Handbuch der Physik, ed. by S. Flügge, vol. 12 (Springer, Berlin, 1958), p. 295 [in German].Google Scholar
  29. 29.
    A.F. Bogatyrev, O.A Kulikova, L.I. Krivolapova, in International Scientific Conference on Mathematical Methods in Technics and Technology—MMTT-25, vol. 9 (2012), p. 94 [in Russian].Google Scholar
  30. 30.
    A.F. Bogatyrev, O.A. Kulikova, in Proceedings of the Higher Education Institutions. Energetics Issues, vol. 3–4 (Russian Federation, 2013), p. 127 [in Russian].Google Scholar
  31. 31.
    A.F. Bogatyrev, N.D. Kosov, E.E. Makletsova, J. Eng. Phys. 29, 177 (1975). [in Russian]Google Scholar
  32. 32.
    A.F. Bogatyrev, S.N. Gudomenko, E.E. Makletsova, Thermophysical Properties of Substances and Materials (Standard Press, Moscow, 1982). [in Russian]Google Scholar
  33. 33.
    A.F. Bogatyrev, N.D. Kosov, E.E. Makletsova, Thermo-Physical Properties of Gases (Nauka, Moscow, 1973), pp. 33–37. [in Russian]Google Scholar
  34. 34.
    A.F. Bogatyrev, V.F. Kryuchkov, E.E. Makletsova, Diffusion in Gases and Fluids (Kaz-GU, Alma-Ata, 1974). [in Russian]Google Scholar
  35. 35.
    A.F. Bogatyrev, O.A. Kulikova, M.A. Nezovitina, Sci. Rev. 8, 101 (2013). [in Russian]Google Scholar
  36. 36.
    N.B. Vargaftic, Handbook of Physical Properties of Liquids and Gases (Nauka, Moscow, 1972). [in Russian]Google Scholar
  37. 37.
    A.F. Bogatyrev, V.R. Belalov, in Proceedings of the Higher Education Institutions. Energetics Issues, vol. 3–4 (Russian Federation, 2011), p. 49 [in Russian]Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alexander Fyodorovich Bogatyrev
    • 1
  • Olga Andreevna Makeenkova
    • 1
  • Maria Alexandrovna Nezovitina
    • 1
  1. 1.Smolensk Branch of National Research University “Moscow Power Engineering Institute”SmolenskRussian Federation

Personalised recommendations