Skip to main content
Log in

Temperature Dependence of Thermal Transport Properties of GeSeSb Chalcogenide Glasses

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Measurements of the effective thermal conductivity \((\lambda _{\mathrm{e}})\) and effective thermal diffusivity \((k_{\mathrm{e}})\) of \(\hbox {Ge}_{30-x}\hbox {Se}_{70}\hbox {Sb}_{x}\,(x = (10, 15, 20\), and 25) at. wt.%) chalcogenide glasses have been carried out in the temperature range from room temperature to above the glass transition temperature using the transient plane source technique. In the heating process, variations of \(\lambda _{\mathrm{e}}\) and \(k_{\mathrm{e}}\) are observed. Both quantities remain approximately constant in the temperature range from room temperature to \(160\,^{\circ }\)C, beyond which a linear increase is observed and they reach a maximum in the vicinity of a critical temperature called the glass transition temperature \((T_{\mathrm{g}})\). It is interesting to note that \(\lambda _{\mathrm{e}}\) and \(k_{\mathrm{e}}\) decrease above the glass transition temperature of the glasses. Such a type of behavior can be explained on the basis of structural changes occurring in \(\hbox {Ge}_{30-x}\hbox {Se}_{70}\hbox {Sb}_{x}\,(x = (10, 15, 20\), and 25) at. wt.%) chalcogenide glasses. Results also indicate that both \(\lambda _{\mathrm{e}}\) and \(k_{\mathrm{e}}\) increase with increasing weight percentage of Sb. This is because of an increase of the weak bond density in the glassy system with the addition of Sb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Nemec, M. Frumar, J. Non Cryst. Solids 299–302, 1018 (2002)

    Article  Google Scholar 

  2. Y.G. Choi, K.H. Kim, B.J. Park, J. Heo, Appl. Phys. Lett. 78, 1249 (2001)

    Article  ADS  Google Scholar 

  3. J. Rowlands, S. Kasap, Phys. Today 50, 24 (1997)

    Article  Google Scholar 

  4. K. Tanaka, Phys. Rev. B 39, 1270 (1989)

    Article  ADS  Google Scholar 

  5. J. Troles, F. Smektala, Y. Jestin, L. Begion, S. Danto, M. Guignard, J. Non Cryst. Solids 352, 248 (2006)

    Article  ADS  Google Scholar 

  6. S.K. Srivastava, P.K. Dwivedi, Physica B 183, 409 (1993)

    Article  ADS  Google Scholar 

  7. A. Ganjoo, H. Jain, S. Khalid, C.G. Pantano, Philos. Mag. Lett. 85, 503 (2005)

    Article  ADS  Google Scholar 

  8. P. Boolchand, X. Feng, W.J. Bresser, J. Non Cryst. Solids 348, 293 (2001)

    Google Scholar 

  9. B.J. Madhu, H.S. Jayanna, S. Asokan, Eur. Phys. J. B 71, 21 (2009)

    Article  ADS  Google Scholar 

  10. D.I. Bletskan, Chalcogenide Lett. 3, 81 (2006)

    Google Scholar 

  11. N. Afify, M.A. Abdel-Rahim, A.S. Abd El-Halim, M.M. Hafiz, J. Non Cryst. Solids 128, 269 (1991)

    Article  ADS  Google Scholar 

  12. A.R. Hilton, D.J. Hayes, J. Non Cryst. Solids 17, 339 (1975)

    Article  ADS  Google Scholar 

  13. M. Frumer, H. Ticha, J. Klikoka, P. Tomiska 16, 173 (1975)

  14. R.W. Haisty, H. Krebs, J. Non Cryst. Solids 1, 399 (1969)

    Article  ADS  Google Scholar 

  15. N. Mehta, K. Singh, N.S. Saxena, Thermochim. Acta 475, 80 (2008)

    Article  Google Scholar 

  16. K. Singh, N.S. Saxena, D. Patidar, J. Phys. Chem. Solids 66, 946 (2005)

    Article  ADS  Google Scholar 

  17. K. Singh, N.S. Saxena, O.N. Srivastava, D. Patidar, T.P. Sharma, Chalcogenide Lett. 3, 33 (2006)

    Google Scholar 

  18. K. Singh, N.S. Saxena, Mater. Sci. Eng. A 392, 38 (2005)

    Article  Google Scholar 

  19. M.A. Afifi, H.H. Labib, M.H. El-Fazary, M. Fadel, Appl. Phys. A 55, 167 (1992)

    Article  ADS  Google Scholar 

  20. S.E. Gustafsson, Rev. Sci. Instrum. 62, 797 (1991)

    Article  ADS  Google Scholar 

  21. M. Misonou, H. Endo, Ber. Bunsen Ges. Phys. Chem. 86, 645 (1982)

    Google Scholar 

  22. O. Uemura, Y. Sagara, T. Satow, Phys. Status Solidi A 26, 99 (1974)

    Article  ADS  Google Scholar 

  23. R.W. Fawcett, C.N.J. Wagner, G.S. Cargill III, J. Non Cryst. Solids 8–10, 369 (1972)

    Article  Google Scholar 

  24. J.C. Malaurent, J. Dixmier, J. Non Cryst. Solids 35–36, 1227 (1980)

    Article  Google Scholar 

  25. S. Sharma, N. Sharma, P. Sharma, V. Sharma, J. Non Cryst. Solids 362, 136 (2013)

    Article  ADS  Google Scholar 

  26. H. Sakai, K. Shimakawa, Y. Inagaki, T. Arizumi, Jpn. J. Appl. Phys. 13, 500 (1974)

    Article  ADS  Google Scholar 

  27. A. Giridhar, P.S.L. Narasimham, S. Mahadevan, J. Non Cryst. Solids 37, 165 (1980)

    Article  ADS  Google Scholar 

  28. X. Zhang, D.A. Drabold, Phys. Rev. B 62, 15695 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

One of the authors (Vandana Kumari) is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi (India) for providing a research scholarship. We are also thankful to Dr. Mahesh Baboo for his help in various ways during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandana Kumari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, V., Kaswan, A., Patidar, D. et al. Temperature Dependence of Thermal Transport Properties of GeSeSb Chalcogenide Glasses. Int J Thermophys 36, 722–732 (2015). https://doi.org/10.1007/s10765-014-1816-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1816-9

Keywords

Navigation