International Journal of Thermophysics

, Volume 36, Issue 5–6, pp 1244–1251 | Cite as

Laser-Generated Leaky Rayleigh Waves at Fluid-Coating–Substrate Interfaces

  • Hong-xiang Sun
  • Shu-yi Zhang


The propagation characteristics of laser-generated leaky Rayleigh waves at fluid-coating–substrate interfaces have been investigated quantitatively. Based on the plane strain and fluid–solid interaction theories, a finite-element model is developed to simulate the laser-generated leaky Rayleigh waves at the interfaces of fluid and several metal-plate configurations, such as single plates (aluminum plate and brass plate), and coating–substrate systems (aluminum–brass system and brass–aluminum system). In addition, in order to study the influences of water loading on the attenuation characteristics of the leaky Rayleigh waves, the leaky Rayleigh waves at the interfaces between these solid structures and air are also calculated for comparison.


Coating–substrate system Finite-element simulation  Laser ultrasound Leaky Rayleigh wave 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11174142, 11404147, 11347219), the National Basic Research Program of China (Grant No. 2012CB921504), PAPD of Jiangsu Province, the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20140519, BK2011462), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 12KJB140003), the Special Fund for Public Interest Research of China (Grant No. 201510068), and the Research Fund for Advanced Talents of Jiangsu University (Grant No. 13JDG106).


  1. 1.
    D.E. Chimenti, A.H. Nayfeh, D.L. Butler, J. Appl. Phys. 53, 170 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    A.T. De Hoop, J.H.M.T. van der Hijden, J. Acoust. Soc. Am. 74, 333 (1983)MATHADSCrossRefGoogle Scholar
  3. 3.
    J.R. Chamuel, G.H. Brooke, J. Acoust. Soc. Am. 83, 1336 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    C. Desmet, V. Gusev, W. Lauriks, C. Glorieux, J. Thoen, Opt. Lett. 22, 69 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    J.Y. Zhu, J.S. Popovics, F. Schubert, J. Acoust. Soc. Am. 116, 2101 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Q.B. Han, H. Wang, M.L. Qian, Chin. Phys. Lett. 22, 3104 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Zhao, Z.H. Shen, J. Lu, X.W. Ni, Phys. Lett. A 370, 104 (2007)MATHADSCrossRefGoogle Scholar
  8. 8.
    X.D. Xu, J. Goossens, G. Shkerdin, C. Glorieux, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 675 (2008)CrossRefGoogle Scholar
  9. 9.
    C.G. Xu, B.Q. Xu, G.D. Xu, Appl. Phys. A 105, 379 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    H.X. Sun, S.Y. Zhang, J. Appl. Phys. 109, 073107 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    H.X. Sun, B.Q. Xu, R.Z. Qian, J. Appl. Phys. 106, 073108 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Lab of Modern Acoustics, Institute of AcousticsNanjing UniversityNanjingChina
  2. 2.Faculty of ScienceJiangsu UniversityZhenjiangChina
  3. 3.State Key Laboratory of Acoustics, Institute of AcousticsChinese Academy of SciencesBeijingChina

Personalised recommendations