Advertisement

International Journal of Thermophysics

, Volume 35, Issue 9–10, pp 1725–1748 | Cite as

The Discharge Crucible Method for Making Measurements of the Physical Properties of Melts: An Overview

  • T. Gancarz
  • W. Gąsior
  • H. Henein
Article

Abstract

The physicochemical properties, viscosity, density, and surface tension, were measured using the discharge crucible method (DC) on a wide range of pure melts and alloys and for AZ91D in two gas atmospheres. The DC method was confirmed on pure metals, Sb, Sn, Zn, and compared with corresponding literature data. Results are also reported for Sn–Sb alloys containing (10, 20, 25, 50, and 75) at% of Sb at 550 K to 850 K, for Sn–Ag alloys containing (3.8, 32, 55, and 68) at% Ag, for commercially pure Al, and for an AZ91D Mg alloy under an argon atmosphere. The properties for AZ91D were also measured under an atmosphere of air containing 2 % \(\hbox {SF}_{6}\). The results are compared with published data on all alloys. The experimentally measured surface-tension values are compared with the Butler model. Several models are compared and discussed for the viscosity measurements.

Keywords

Al AZ91D Density Sb SbSn alloys Sn SnAg alloys Surface tension Viscosity Zn 

Nomenclature

\(C_\mathrm{m}\)

Cumulative mass, kg

\(D(T)\)

Diameter of lower container in CM method as a function of temperature \(T\), m

\(E\)

Activation energy, \(\hbox {kJ}{\cdot }\hbox {mol}^{-1}\)

\(M\)

Molecular weight, \(\hbox {kg}{\cdot }\hbox {mol}^{-1}\)

\(Q_\mathrm{exp}\)

Experimental volumetric flow rate, \(\hbox {m}^{3}{\cdot }\hbox {s}^{-1}\)

\(R\)

Universal gas constant, \(\hbox {J}{\cdot }\hbox {mol}^{-1}{\cdot }\hbox {K}^{-1}\)

\(T\)

Temperature, K

\(V\)

Volume of draining fluid, volume liquid, \(\hbox {m}^{3}\)

\(a\)

Polynomial constant describing slope of the discharge coefficient curve, dimensionless

\(b\)

Polynomial constant describing the \(y\)-intercept of the discharge coefficient curve, dimensionless

\(g\)

Gravity acceleration, \(\hbox {m}{\cdot }\hbox {s}^{-2}\)

\(h\)

Planck’s constant, \(\hbox {J}{\cdot }\hbox {s}\)

\(h_\mathrm{exp}\)

Liquid head, m

\(r_\mathrm{o}\)

Orifice radius, m

\(t\)

Time, s

\(u\)

Velocity, \(\hbox {m}{\cdot }\hbox {s}^{-1}\)

\(\eta \)

Viscosity, \(\hbox {mPa}{\cdot }\hbox {s}\)

\(\eta _\mathrm{o}\)

Pre-exponential, \(\hbox {mPa}{\cdot }\hbox {s}\)

\(\eta _\mathrm{AZ91D}\)

Viscosity of AZ91D at temperature \(T\), \(\hbox {mPa}{\cdot }\hbox {s}\)

\(\rho \)

Density, \(\hbox {kg}{\cdot }\hbox {m}^{-3}\)

\(\sigma \)

Surface tension, \(\hbox {mN}{\cdot }\hbox {m}^{-1}\)

Bo

Bond number \(\left( \frac{\rho gr_0 h_{\exp } }{\sigma }\right) \), dimensionless

\(C_\mathrm{d}\)

Discharge coefficient, dimensionless

Fr

Froude number \((\hbox {Q}_\mathrm{exp}^{2}/(2\pi \hbox {gr}_\mathrm{o}^{3}))\), dimensionless

Re

Reynolds number \(\left( \frac{2\rho Q_{\exp } }{\pi r_0 \eta }\right) \), dimensionless

Notes

Acknowledgments

This work was supported in part by the Natural Science and Engineering Research Council of Canada. The authors from IMIM PAS wish to thank the Ministry of Science and Higher Education for financing the projects.

References

  1. 1.
    J. Pstrus, Physico-Chemical Properties of New Solder Alloys, An Example of Sn–Zn–In System, Ph.D. Thesis, Krakow, 2008Google Scholar
  2. 2.
    D.N. Staicopolus, J. Colloid Sci. 17, 439 (1962)CrossRefGoogle Scholar
  3. 3.
    R.W. Hyers, Meas. Sci. Technol. 16, 394 (2005)CrossRefADSGoogle Scholar
  4. 4.
    R.F. Brooks, A.T. Dinsdale, P.N. Quested, Meas. Sci. Technol. 16, 354 (2005)CrossRefADSGoogle Scholar
  5. 5.
    T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon Press, Oxford, 1988), p. 77Google Scholar
  6. 6.
    A. Crawley, D. Kiff, Met. Trans. 3, 157 (1972)CrossRefGoogle Scholar
  7. 7.
    T.R. Hogness, J. Am. Chem. Soc. 43, 1621 (1921)CrossRefGoogle Scholar
  8. 8.
    Y. Matuyama, Sci. Tohoku Univ. 16, 555 (1927) in E. Pelzel. Z. Metallkde. 93, 248 (1952)Google Scholar
  9. 9.
    J. Pstruś, Z. Moser, W. Gąsior, A. Dębski, Arch. Metall. Mater. 51, 335 (2006)Google Scholar
  10. 10.
    S.B. Martin Jr, H.E. Allen, Chemtech 26, 23 (1996)Google Scholar
  11. 11.
    K. Shibuya, M. Ozawa, ISIJ Int. 31, 661 (1991)CrossRefGoogle Scholar
  12. 12.
    A.J. Yule, J.J. Dunkley, Atomization of Melts (Clarendon Press, Oxford, 1994), p. 17Google Scholar
  13. 13.
    M. Hirai, Inst. Jpn. Int. 33, 251 (1993)MathSciNetCrossRefGoogle Scholar
  14. 14.
    P. Fima, T. Gancarz, J. Pstrus, K. Bukat, J. Sitek, Solder. Surf. Mount Technol. 24, 71 (2012)CrossRefGoogle Scholar
  15. 15.
    S.J. Roach, H. Henein, Can. Metall. Q. 42, 175 (2003)CrossRefGoogle Scholar
  16. 16.
    S.J. Roach, H. Henein, Metall. Mater. Trans. B 36, 667 (2005)CrossRefGoogle Scholar
  17. 17.
    T. Gancarz, Z. Moser, W. Gąsior, J. Pstruś, H. Henein, Int. J. Thermophys. 32, 1210 (2011)CrossRefADSGoogle Scholar
  18. 18.
    R.L. Daugherty, J.B. Franzini, E.J. Finnemore, Fluid Mechanics with Engineering Applications, 8th edn. (McGraw-Hill, New York, 1985), p. 450Google Scholar
  19. 19.
    H. Henein, Can. Metall. Q. 44, 261 (2004)CrossRefGoogle Scholar
  20. 20.
    T. Gancarz, W. Gasior, H. Henein, Int. J. Thermophys. under reviewGoogle Scholar
  21. 21.
    D. Lide (ed.), CRC Handbook of Chemistry and Physics, 88th edn. (CRC Press, Boca Raton, FL, 2008)Google Scholar
  22. 22.
    A. Crawley, D. Kiff, Met. Trans. 3, 157 (1972)CrossRefGoogle Scholar
  23. 23.
    T. Sato, S. Munakata, Bull. Res. Inst. Min. Dress. Metall. 11, 183 (1955)Google Scholar
  24. 24.
    H.J. Fisher, A. Phillips, JOM-J. Min. Met. Mat. S, 1060 (1954)Google Scholar
  25. 25.
    W. Gasior, Z. Moser, J. Pstrus, J. Phase Equilib. 24, 504 (2003)CrossRefGoogle Scholar
  26. 26.
    I. Lauerman, F. Sauerwald, Z. Metallkde. 55, 605 (1964)Google Scholar
  27. 27.
    V. Somol, M. Beranek, Anorg. Chem. Technol. B30, 199 (1984)Google Scholar
  28. 28.
    V.B. Lazarev, Russ. J. Phys. Chem. 38, 325 (1964)Google Scholar
  29. 29.
    T. Iida, Z. Morita, S. Takeuchi, J. Jpn. Inst. Met. 39, 1169 (1975)Google Scholar
  30. 30.
    E. Gebhartd, K. Kostlin, Z. Metallkde. 48, 636 (1957)Google Scholar
  31. 31.
    H. Nakajima, Trans. JIM. 17, 403 (1976)MathSciNetGoogle Scholar
  32. 32.
    F. Herwing, M. Wobst, Z. Metallkde. 83, 35 (1992)Google Scholar
  33. 33.
    M. Kucharski, Arch. Hut. 22, 181 (1977)Google Scholar
  34. 34.
    M. Kucharski, P. Fima, Monatsh. Chem. 136, 1841 (2005)CrossRefGoogle Scholar
  35. 35.
    P. Fima, R. Nowak, N. Sobczak, J. Mater. Sci. 45, 2009 (2010)Google Scholar
  36. 36.
    T. Hogness, J. Am. Chem. Soc. 43, 1621 (1921)CrossRefGoogle Scholar
  37. 37.
    D. Melford, T. Haor, J. Inst. Met. 85, 197 (1956–57)Google Scholar
  38. 38.
    G. Lang, J. Inst. Met. 101, 300 (1973)Google Scholar
  39. 39.
    G. Lang, P. Laty, J. Joud, P. Desre, Z. Metallkde. 68, 133 (1977)Google Scholar
  40. 40.
    E. Gebhardtd, M. Becker, E. Tragner, Z. Metallkde. 44, 379 (1953)Google Scholar
  41. 41.
    K. Okajima, H. Sakao, Trans. Jpn. Inst. Metal. 23, 111 (1982)Google Scholar
  42. 42.
    E. Pelzel, Berg. Huttenmann. Monatsh. 93, 247 (1948)Google Scholar
  43. 43.
    W. Krause, F. Sauerwald, M. Micalke, Z. Anorg. Chem. 181, 353 (1929)CrossRefGoogle Scholar
  44. 44.
    L.L. Bircumshaw, Philos. Mag. 3, 1286 (1927)Google Scholar
  45. 45.
    Y. Matuyama, Sci. Rep. Tohoku Imp. Univ. 16, 555 (1927)Google Scholar
  46. 46.
    D. Ofte, L.J. Wittenberg, Trans. Met. Soc. AIME 227, 706 (1963)Google Scholar
  47. 47.
    A. Sinha, E. Miller, Met. Trans. 1, 1356 (1970)Google Scholar
  48. 48.
    H. Neumann, Ch. Dong, Yu. Plevachuk, Z. Metallkde. 91, 933 (2000)Google Scholar
  49. 49.
    K.C. Mills, Y.C. Su, Int. Mater. Rev. 51, 329 (2006)CrossRefADSGoogle Scholar
  50. 50.
    T. Gancarz, J. Jourdain, H. Henein, unpublished research, University of Alberta, 2014Google Scholar
  51. 51.
    I. Kaban, S. Mhiaoui, W. Hoyer, J.-G. Gasser, J. Phys. Condens. Matter. 17, 7867 (2005)Google Scholar
  52. 52.
    P. Fima, Appl. Surf. Sci. 257, 3265 (2011)CrossRefADSGoogle Scholar
  53. 53.
    Z. Moser, W. Gasior, J. Pstrus, J. Phase Equilib. 22, 254 (2001)CrossRefGoogle Scholar
  54. 54.
    J. Lee, W. Shimoda, T. Tanaka, Mater. Trans. 45, 2864 (2004)CrossRefGoogle Scholar
  55. 55.
    W. Gasior, Z. Moser, J. Pstrus, M. Kucharski, Arch. Metall. 46, 23 (2001)Google Scholar
  56. 56.
    E. Gebhardt, M. Becker, E. Tragner, Z. Metallkde. 46, 379 (1955)Google Scholar
  57. 57.
    Yu. Plevachuk, W. Hoyer, I. Kaban, M. Kohler, R. Novakovic, J. Mater. Sci. 45, 2051 (2010)CrossRefADSGoogle Scholar
  58. 58.
    R. Novakovic, D. Giuranno, E. Ricci, S. Delsante, D. Li, G. Borzone, Surf. Sci. 605, 248 (2011)CrossRefADSGoogle Scholar
  59. 59.
    S.J. Roach, H. Henein, Int. J. Thermophys. 33, 484 (2012)CrossRefADSGoogle Scholar
  60. 60.
    C.J. Smithells, Metals Reference Book, 7th edn. (1998), p. 14Google Scholar
  61. 61.
    J.A.V. Butler, Proc. R. Soc. Lond., Ser. A CXXXV, 348 (1932)Google Scholar
  62. 62.
    I. Ohnuma, X.J. Liu, K. Ishida, J. Electron. Mater. 28, 1164 (1998)CrossRefADSGoogle Scholar
  63. 63.
    A. Jönsson, J. Ågren, Mater. Sci. Technol. 2, 913 (1986)CrossRefGoogle Scholar
  64. 64.
    E.A. Moelwyn-Hughes, Phys. Chem. 434 (1970)Google Scholar
  65. 65.
    A. Sichen, J. Bygdén, S. Seetharaman, Metall. Mater. Trans. B 25, 519 (1994)CrossRefGoogle Scholar
  66. 66.
    S. Seetharaman, D. Sichen, Metall. Mater. Trans. B 25, 589 (1994)CrossRefGoogle Scholar
  67. 67.
    L.Y. Kozlov, L.M. Romanov, N.N. Petrov, Izv. Vuzov. Chernaya Metall. 3, 7 (1983)Google Scholar
  68. 68.
    G. Kaptay, Proceedings of MicroCAD 2003, International Conference Section: Metallurgy (University of Miskolc, Hungary, 2003), p. 23Google Scholar
  69. 69.
    Z. Morita, T. Iida, M. Ued, Liquid Metals, Institute of Physics Conference Series No. 30 (Bristol, 1977), p. 600Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Metallurgy and Materials SciencePolish Academy of ScienceWarsawPoland
  2. 2.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations