Advertisement

International Journal of Thermophysics

, Volume 36, Issue 2–3, pp 283–289 | Cite as

Emissivity Measurement Under Vacuum from \(4\,\upmu \hbox {m}\) to \(100\,\upmu \hbox {m}\) and from \(-40\,^{\circ }\hbox {C}\) to \(450\,^{\circ }\hbox {C}\) at PTB

  • A. Adibekyan
  • C. Monte
  • M. Kehrt
  • B. Gutschwager
  • J. Hollandt
Article

Abstract

A new facility of the Physikalisch-Technische Bundesanstalt for emissivity measurements under vacuum was brought into operation, capable of measuring directional spectral emissivity in the wavelength range from \(4\,\upmu \hbox {m}\) to \(100\,\upmu \hbox {m}\) and temperature range from \(-40\,^{\circ }\hbox {C}\) to \(450\,^{\circ }\hbox {C}\). The wide spectral and thermal ranges in combination with a target uncertainty of less than 0.01 meet the needs of the solar thermal energy industry and climate research. Emissivities determined in these ranges and at that uncertainty levels would allow significantly improving solar thermal absorber coatings and designing improved reference blackbodies for remote sensing. Here the measurement scheme which is based on the measurement of the spectral radiance of a sample with respect to the spectral radiance of two blackbodies at different temperatures is presented, and the subsequent evaluation of the emissivity is discussed. The first results of emissivity measurements under vacuum in the wavelength range from \(4\,\upmu \hbox {m}\) to \(100\,\upmu \hbox {m}\) and temperature range from \(-40\,^{\circ }\hbox {C}\) to \(450\,^{\circ }\hbox {C}\) are presented and compared with results obtained in air, and it is shown that samples with very low emissivity can be measured with the required low target uncertainty of less than 0.01.

Keywords

Blackbody Emissivity Spectral radiance Uncertainty Vacuum 

References

  1. 1.
    A.C.E. Kennedy, Review of Mid- to High-Temperature Solar Selective Absorber Materials (National Renewable Energy Lab, Golden, CO, 2002)CrossRefGoogle Scholar
  2. 2.
    H. Latvakoski, M. Watson, S. Topham, D. Scott, M. Wojcik, G. Bingham, in Infrared Remote Sensing and Instrumentation XVIII, ed. by M. Strojnik, G. Paez, 7808 (San Diego, CA, 2010), pp. 78080X–78080X-12 or Proc. SPIE 7808, 78080X (2010)Google Scholar
  3. 3.
    C. Monte, B. Gutschwager, S.P. Morozova, J. Hollandt, Int. J. Thermophys. 30, 203 (2009)CrossRefADSGoogle Scholar
  4. 4.
    S.P. Morozova, N.A. Parfentiev, B.E. Lisiansky, V.I. Sapritsky, N.L. Dovgilov, U.A. Melenevsky, B. Gutschwager, C. Monte, J. Hollandt, Int. J. Thermophys. 29, 341 (2008)Google Scholar
  5. 5.
    S.P. Morozova, N.A. Parfentiev, B.E. Lisiansky, U.A. Melenevsky, B. Gutschwager, C. Monte, J. Hollandt, Int. J. Thermophys. 31, 1809 (2010)Google Scholar
  6. 6.
    R.B. Pérez-Sáez, L. del Campo, M.J. Tello, Int. J. Thermophys. 29, 1141 (2008)CrossRefADSGoogle Scholar
  7. 7.
    A. Adibekyan, C. Monte, M. Kehrt, S.P. Morozova, B. Gutschwager, J. Hollandt, Meas. Tech. 55, 1163 (2013)Google Scholar
  8. 8.
    C. Monte, J. Hollandt, High Temp. High Press. 39, 151 (2010)Google Scholar
  9. 9.
    C. Monte, J. Hollandt, Metrologia 47, 172 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Adibekyan
    • 1
  • C. Monte
    • 1
  • M. Kehrt
    • 1
  • B. Gutschwager
    • 1
  • J. Hollandt
    • 1
  1. 1.Physikalisch-Technische Bundesanstalt (PTB)BerlinGermany

Personalised recommendations