Skip to main content
Log in

High-Frequency Shear Viscosity of Low-Viscosity Liquids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A thickness shear quartz resonator technique is described to measure the shear viscosity of low-viscosity liquids in the frequency range from 6 MHz to 130 MHz. Examples of shear-viscosity spectra in that frequency range are presented to show that various molecular processes are accompanied by shear-viscosity relaxation. Among these processes are conformational variations of alkyl chains, with relaxation times \(\tau _{\eta }\) of about 0.3 ns for \(n\)-pentadecane and \(n\)-hexadecane at 25 \(^{\circ }\)C. These variations can be well represented in terms of a torsional oscillator model. Also featured briefly are shear-viscosity relaxations associated with fluctuations of hydrogen-bonded clusters in alcohols, for which \(\tau _{\eta }\) values between 0.3 ns (\(n\)-hexanol) and 1.5 ns (\(n\)-dodecanol) have been found at 25 \(^{\circ }\)C. In addition, the special suitability of high-frequency shear-viscosity spectroscopy to the study of critically demixing mixtures is demonstrated by some illustrative examples. Due to slowing, critical fluctuations do not contribute to the shear viscosity at sufficiently high frequencies of measurements so that the non-critical background viscosity \(\eta _\mathrm{bg}\) of critical systems can be directly determined from high-frequency shear-viscosity spectroscopy. Relaxations in \(\eta _\mathrm{bg}\) appear also in the shear-viscosity spectra with, for example, \(\tau _{\eta }\,\approx \) 2 ns for the critical triethylamine–water binary mixture at temperatures between 10 \(^{\circ }\)C and 18 \(^{\circ }\)C. Such relaxations noticeably influence the relaxation rate of order parameter fluctuations. They may be also the reason for the need of a special mesoscopic viscosity when mutual diffusion coefficients of critical polymer solutions are discussed in terms of mode-coupling theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.J. Wuensche, T.F. Hueter, M.S. Cohen, J. Acoust. Soc. Am. 28, 311 (1956)

    Article  ADS  Google Scholar 

  2. R. Behrends, U. Kaatze, J. Phys. Chem. A 104, 3269 (2000)

    Article  Google Scholar 

  3. R. Behrends, U. Kaatze, J. Phys. Chem. A 105, 5829 (2001)

    Article  Google Scholar 

  4. E. Zorębski, M. Geppert-Rybczyńska, M. Zorębski, J. Phys. Chem. B 117, 3867 (2013)

    Article  Google Scholar 

  5. P. Debye, Polar Molecules (Chemical Catalog, New York, 1929)

    MATH  Google Scholar 

  6. K.F. Herzfeld, T.A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic Press Inc., New York, 1959)

    Google Scholar 

  7. W.M. Madigosky, R.W. Warfield, J. Chem. Phys. 78, 1912 (1983)

    Article  ADS  Google Scholar 

  8. R. Piccirelli, T.A. Litovitz, J. Acoust. Soc. Am. 29, 1009 (1957)

    Article  ADS  Google Scholar 

  9. A.J. Barlow, S. Subramanian, Br. J. Appl. Phys. 17, 1201 (1966)

    Article  ADS  Google Scholar 

  10. D.A. Pinnow, S.J. Candau, J.T. LaMacchia, T.A. Litovitz, J. Acoust. Soc. Am. 43, 131 (1968)

    Article  ADS  Google Scholar 

  11. R.S. Moore, H.J. McSkimin, in Physical Acoustics, Principles and Methods, vol. 6, ed. by W.P. Mason, R.N. Thurston (Academic, New York, 1970), p. 167

    Google Scholar 

  12. S. Ernst, M. Waciński, Acustica 45, 30 (1980)

    Google Scholar 

  13. H. Hoffmann, M. Löbl, H. Rehage, in Physics of Amphiphiles: Micelles, Vesicles and Microemulsions, ed. by V. Degiorgio, M. Corti (North-Holland, Amsterdam, 1985), p. 237

    Google Scholar 

  14. S.B. Grigor’ev, I.G. Mikhailov, O.S. Khakimov, Sov. Phys. Acoust. 20, 26 (1974)

    Google Scholar 

  15. S.B. Grigor’ev, Y.S. Manucharov, I.G. Mikhailov, O.S. Khakimov, Sov. Phys. Acoust. 21, 331 (1976)

    Google Scholar 

  16. E. Nwankwo, C.J. Durning, Sens. Actuators A 72, 99 (1999)

    Article  Google Scholar 

  17. R. Behrends, U. Kaatze, Phys. Rev. E 68, 011205 (2003)

    Article  ADS  Google Scholar 

  18. S.Z. Mirzaev, R. Behrends, T. Heimburg, J. Haller, U. Kaatze, J. Chem. Phys. 124, 144517 (2006)

    Article  ADS  Google Scholar 

  19. H. Schilling, W. Pechhold, Acustica 22, 244 (1969/1970)

  20. E. Nwankwo, C.J. Durning, Sens. Actuators A 72, 195 (1999)

    Article  Google Scholar 

  21. A.J. Matheson, Molecular Acoustics (Wiley-Interscience, New York, 1971)

    Google Scholar 

  22. H.T. O’Neil, Phys. Rev. 75, 928 (1949)

    Article  ADS  MATH  Google Scholar 

  23. H.J. McSkimin, in Physical Acoustics, Principles and Methods, vol. IA, ed. by W.P. Mason (Academic, New York, 1964), p. 271

    Chapter  Google Scholar 

  24. H.J. McSkimin, J. Acoust. Soc. Am. 24, 355 (1952)

    Article  ADS  Google Scholar 

  25. D.E. Diller, in Measurement of the Transport Properties of Fluids, ed. by J.V. Sengers (Blackwell, Oxford, 1991), p. 89

    Google Scholar 

  26. R.F. Hafer, A. Laesecke, Meas. Sci. Technol. 14, 663 (2003)

    Article  ADS  Google Scholar 

  27. F. Eggers, K.-H. Richmann, Rheol. Acta 34, 483 (1995)

    Article  Google Scholar 

  28. H. Schilling, W. Pechhold, Acustica 22, 244 (1969/1979)

  29. F. Eggers, T. Funck, J. Phys. E 20, 523 (1987)

    Article  ADS  Google Scholar 

  30. R. Behrends, U. Kaatze, Meas. Sci. Technol. 12, 519 (2001)

    Article  ADS  Google Scholar 

  31. G. Sauerbrey, Arch. Eletron. Übertragung 18, 624 (1964)

    Google Scholar 

  32. R. Bechmann, D.R. Curran, Arch. Eletron. Übertragung 19, 499 (1965)

    Google Scholar 

  33. R. Hagen, U. Kaatze, J. Chem. Phys. 120, 9656 (2004)

    Article  ADS  Google Scholar 

  34. U. Kaatze, K. Lautscham, W. Berger, Chem. Phys. Lett. 144, 273 (1988)

    Article  ADS  Google Scholar 

  35. V. Volterra, J.A. Bucaro, T.A. Litovitz, Ber. Bunsen Ges. Phys. Chem. 75, 309 (1971)

    Google Scholar 

  36. A.V. Tobolsky, D.B. DuPré, J. Polym. Sci. A-2 6, 1177 (1968)

    Article  Google Scholar 

  37. A.V. Tobolsky, D.B. DuPré, Adv. Polym. Sci. 6, 103 (1969)

    Article  Google Scholar 

  38. K.S. Pitzer, J. Chem. Phys. 12, 310 (1944)

    Article  ADS  Google Scholar 

  39. S. Halstenberg, W. Schrader, P. Das, J.K. Bhattacharjee, U. Kaatze, J. Chem. Phys. 118, 5638 (2003)

    Article  Google Scholar 

  40. B. Gestblom, A. El-Samaky, J. Sjöblom, J. Solut. Chem. 14, 375 (1985)

    Article  Google Scholar 

  41. S. Schwerdtfeger, F. Köhler, R. Pottel, U. Kaatze, J. Chem. Phys. 115, 4186 (2001)

    Article  ADS  Google Scholar 

  42. U. Kaatze, R. Behrends, R. Pottel, J. Non Cryst. Solids 305, 19 (2002)

    Article  ADS  Google Scholar 

  43. J. Barthel, K. Bachhuber, R. Buchner, H. Hetzenauer, Chem. Phys. Lett. 165, 369 (1990)

    Article  ADS  Google Scholar 

  44. R. Buchner, J. Barthel, J. Mol. Liq. 52, 131 (1992)

    Article  Google Scholar 

  45. J.T. Kindt, C.A. Schmuttenmaer, J. Phys. Chem. 100, 10373 (1996)

    Article  Google Scholar 

  46. T. Sato, R. Buchner, J. Chem. Phys. 118, 4606 (2003)

    Article  ADS  Google Scholar 

  47. T. Sato, R. Buchner, J. Chem. Phys. 119, 10789 (2003)

    Article  ADS  Google Scholar 

  48. P. Petong, R. Pottel, U. Kaatze, J. Phys. Chem. A 103, 6114 (1999)

    Article  Google Scholar 

  49. H. Huth, L.-M. Wang, C. Schick, R. Richert, J. Chem. Phys. 126, 104503 (2007)

    Article  ADS  Google Scholar 

  50. L.P. Singh, R. Richert, Phys. Rev. Lett. 109, 167802 (2012)

    Article  ADS  Google Scholar 

  51. L.P. Singh, C. Alba-Simionesco, R. Richert, J. Chem. Phys. 139, 144503 (2013)

    Article  ADS  Google Scholar 

  52. W.L. Jorgensen, J. Chem. Phys. 90, 1276 (1986)

    Article  Google Scholar 

  53. M.W. Sagal, J. Chem. Phys. 36, 2437 (1962)

    Article  ADS  Google Scholar 

  54. J.K. Bhattacharjee, S.Z. Mirzaev, U. Kaatze, Int. J. Thermophys. 33, 469 (2012)

    Article  ADS  Google Scholar 

  55. J.K. Bhattacharjee, R.A. Ferrell, R.S. Basu, J.V. Sengers, Phys. Rev. A 24, 1469 (1981)

    Article  ADS  Google Scholar 

  56. H.C. Burstyn, J.V. Sengers, J.K. Bhattacharjee, R.A. Ferrell, Phys. Rev. A 28, 1567 (1983)

    Article  ADS  Google Scholar 

  57. R.F. Berg, M.R. Moldover, J. Chem. Phys. 89, 3694 (1988)

    Article  ADS  Google Scholar 

  58. R.F. Berg, M.R. Moldover, Phys. Rev. Lett. 82, 920 (1999)

    Article  ADS  Google Scholar 

  59. H. Hao, R.A. Ferrell, J.K. Bhattacharjee, Phys. Rev. E 71, 021201 (2005)

    Article  ADS  Google Scholar 

  60. L.P. Kadanoff, J. Swift, Phys. Rev. 166, 89 (1968)

    Article  ADS  Google Scholar 

  61. B.I. Halperin, P.C. Hohenberg, Phys. Rev. 177, 952 (1977)

    Article  ADS  Google Scholar 

  62. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

    Article  ADS  Google Scholar 

  63. K. Kawasaki, Ann. Phys. (NY) 61, 1 (1970)

    Article  ADS  Google Scholar 

  64. R.A. Ferrell, Phys. Rev. Lett. 24, 1169 (1970)

    Article  ADS  Google Scholar 

  65. A.F. Kostko, M.A. Anisimov, J.V. Sengers, Phys. Rev. E 76, 021804 (2007)

    Article  ADS  Google Scholar 

  66. S.Z. Mirzaev, U. Kaatze, J. Chem. Phys. 140, 044508 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kaatze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaatze, U., Behrends, R. High-Frequency Shear Viscosity of Low-Viscosity Liquids. Int J Thermophys 35, 2088–2106 (2014). https://doi.org/10.1007/s10765-014-1711-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1711-4

Keywords

Navigation