Advertisement

International Journal of Thermophysics

, Volume 35, Issue 11, pp 2088–2106 | Cite as

High-Frequency Shear Viscosity of Low-Viscosity Liquids

  • U. Kaatze
  • R. Behrends
Article

Abstract

A thickness shear quartz resonator technique is described to measure the shear viscosity of low-viscosity liquids in the frequency range from 6 MHz to 130 MHz. Examples of shear-viscosity spectra in that frequency range are presented to show that various molecular processes are accompanied by shear-viscosity relaxation. Among these processes are conformational variations of alkyl chains, with relaxation times \(\tau _{\eta }\) of about 0.3 ns for \(n\)-pentadecane and \(n\)-hexadecane at 25 \(^{\circ }\)C. These variations can be well represented in terms of a torsional oscillator model. Also featured briefly are shear-viscosity relaxations associated with fluctuations of hydrogen-bonded clusters in alcohols, for which \(\tau _{\eta }\) values between 0.3 ns (\(n\)-hexanol) and 1.5 ns (\(n\)-dodecanol) have been found at 25 \(^{\circ }\)C. In addition, the special suitability of high-frequency shear-viscosity spectroscopy to the study of critically demixing mixtures is demonstrated by some illustrative examples. Due to slowing, critical fluctuations do not contribute to the shear viscosity at sufficiently high frequencies of measurements so that the non-critical background viscosity \(\eta _\mathrm{bg}\) of critical systems can be directly determined from high-frequency shear-viscosity spectroscopy. Relaxations in \(\eta _\mathrm{bg}\) appear also in the shear-viscosity spectra with, for example, \(\tau _{\eta }\,\approx \) 2 ns for the critical triethylamine–water binary mixture at temperatures between 10 \(^{\circ }\)C and 18 \(^{\circ }\)C. Such relaxations noticeably influence the relaxation rate of order parameter fluctuations. They may be also the reason for the need of a special mesoscopic viscosity when mutual diffusion coefficients of critical polymer solutions are discussed in terms of mode-coupling theory.

Keywords

Conformational variations Critical demixing Hydrogen network variations Liquid spectroscopy Shear-viscosity relaxation 

References

  1. 1.
    B.J. Wuensche, T.F. Hueter, M.S. Cohen, J. Acoust. Soc. Am. 28, 311 (1956)ADSCrossRefGoogle Scholar
  2. 2.
    R. Behrends, U. Kaatze, J. Phys. Chem. A 104, 3269 (2000)CrossRefGoogle Scholar
  3. 3.
    R. Behrends, U. Kaatze, J. Phys. Chem. A 105, 5829 (2001)CrossRefGoogle Scholar
  4. 4.
    E. Zorębski, M. Geppert-Rybczyńska, M. Zorębski, J. Phys. Chem. B 117, 3867 (2013)CrossRefGoogle Scholar
  5. 5.
    P. Debye, Polar Molecules (Chemical Catalog, New York, 1929)MATHGoogle Scholar
  6. 6.
    K.F. Herzfeld, T.A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic Press Inc., New York, 1959)Google Scholar
  7. 7.
    W.M. Madigosky, R.W. Warfield, J. Chem. Phys. 78, 1912 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    R. Piccirelli, T.A. Litovitz, J. Acoust. Soc. Am. 29, 1009 (1957)ADSCrossRefGoogle Scholar
  9. 9.
    A.J. Barlow, S. Subramanian, Br. J. Appl. Phys. 17, 1201 (1966)ADSCrossRefGoogle Scholar
  10. 10.
    D.A. Pinnow, S.J. Candau, J.T. LaMacchia, T.A. Litovitz, J. Acoust. Soc. Am. 43, 131 (1968)ADSCrossRefGoogle Scholar
  11. 11.
    R.S. Moore, H.J. McSkimin, in Physical Acoustics, Principles and Methods, vol. 6, ed. by W.P. Mason, R.N. Thurston (Academic, New York, 1970), p. 167Google Scholar
  12. 12.
    S. Ernst, M. Waciński, Acustica 45, 30 (1980)Google Scholar
  13. 13.
    H. Hoffmann, M. Löbl, H. Rehage, in Physics of Amphiphiles: Micelles, Vesicles and Microemulsions, ed. by V. Degiorgio, M. Corti (North-Holland, Amsterdam, 1985), p. 237Google Scholar
  14. 14.
    S.B. Grigor’ev, I.G. Mikhailov, O.S. Khakimov, Sov. Phys. Acoust. 20, 26 (1974)Google Scholar
  15. 15.
    S.B. Grigor’ev, Y.S. Manucharov, I.G. Mikhailov, O.S. Khakimov, Sov. Phys. Acoust. 21, 331 (1976)Google Scholar
  16. 16.
    E. Nwankwo, C.J. Durning, Sens. Actuators A 72, 99 (1999)CrossRefGoogle Scholar
  17. 17.
    R. Behrends, U. Kaatze, Phys. Rev. E 68, 011205 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    S.Z. Mirzaev, R. Behrends, T. Heimburg, J. Haller, U. Kaatze, J. Chem. Phys. 124, 144517 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    H. Schilling, W. Pechhold, Acustica 22, 244 (1969/1970)Google Scholar
  20. 20.
    E. Nwankwo, C.J. Durning, Sens. Actuators A 72, 195 (1999)CrossRefGoogle Scholar
  21. 21.
    A.J. Matheson, Molecular Acoustics (Wiley-Interscience, New York, 1971)Google Scholar
  22. 22.
    H.T. O’Neil, Phys. Rev. 75, 928 (1949)ADSCrossRefMATHGoogle Scholar
  23. 23.
    H.J. McSkimin, in Physical Acoustics, Principles and Methods, vol. IA, ed. by W.P. Mason (Academic, New York, 1964), p. 271CrossRefGoogle Scholar
  24. 24.
    H.J. McSkimin, J. Acoust. Soc. Am. 24, 355 (1952)ADSCrossRefGoogle Scholar
  25. 25.
    D.E. Diller, in Measurement of the Transport Properties of Fluids, ed. by J.V. Sengers (Blackwell, Oxford, 1991), p. 89Google Scholar
  26. 26.
    R.F. Hafer, A. Laesecke, Meas. Sci. Technol. 14, 663 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    F. Eggers, K.-H. Richmann, Rheol. Acta 34, 483 (1995)CrossRefGoogle Scholar
  28. 28.
    H. Schilling, W. Pechhold, Acustica 22, 244 (1969/1979)Google Scholar
  29. 29.
    F. Eggers, T. Funck, J. Phys. E 20, 523 (1987)ADSCrossRefGoogle Scholar
  30. 30.
    R. Behrends, U. Kaatze, Meas. Sci. Technol. 12, 519 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    G. Sauerbrey, Arch. Eletron. Übertragung 18, 624 (1964)Google Scholar
  32. 32.
    R. Bechmann, D.R. Curran, Arch. Eletron. Übertragung 19, 499 (1965)Google Scholar
  33. 33.
    R. Hagen, U. Kaatze, J. Chem. Phys. 120, 9656 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    U. Kaatze, K. Lautscham, W. Berger, Chem. Phys. Lett. 144, 273 (1988)ADSCrossRefGoogle Scholar
  35. 35.
    V. Volterra, J.A. Bucaro, T.A. Litovitz, Ber. Bunsen Ges. Phys. Chem. 75, 309 (1971)Google Scholar
  36. 36.
    A.V. Tobolsky, D.B. DuPré, J. Polym. Sci. A-2 6, 1177 (1968)CrossRefGoogle Scholar
  37. 37.
    A.V. Tobolsky, D.B. DuPré, Adv. Polym. Sci. 6, 103 (1969)CrossRefGoogle Scholar
  38. 38.
    K.S. Pitzer, J. Chem. Phys. 12, 310 (1944)ADSCrossRefGoogle Scholar
  39. 39.
    S. Halstenberg, W. Schrader, P. Das, J.K. Bhattacharjee, U. Kaatze, J. Chem. Phys. 118, 5638 (2003)CrossRefGoogle Scholar
  40. 40.
    B. Gestblom, A. El-Samaky, J. Sjöblom, J. Solut. Chem. 14, 375 (1985)CrossRefGoogle Scholar
  41. 41.
    S. Schwerdtfeger, F. Köhler, R. Pottel, U. Kaatze, J. Chem. Phys. 115, 4186 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    U. Kaatze, R. Behrends, R. Pottel, J. Non Cryst. Solids 305, 19 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    J. Barthel, K. Bachhuber, R. Buchner, H. Hetzenauer, Chem. Phys. Lett. 165, 369 (1990)ADSCrossRefGoogle Scholar
  44. 44.
    R. Buchner, J. Barthel, J. Mol. Liq. 52, 131 (1992)CrossRefGoogle Scholar
  45. 45.
    J.T. Kindt, C.A. Schmuttenmaer, J. Phys. Chem. 100, 10373 (1996)CrossRefGoogle Scholar
  46. 46.
    T. Sato, R. Buchner, J. Chem. Phys. 118, 4606 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    T. Sato, R. Buchner, J. Chem. Phys. 119, 10789 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    P. Petong, R. Pottel, U. Kaatze, J. Phys. Chem. A 103, 6114 (1999)CrossRefGoogle Scholar
  49. 49.
    H. Huth, L.-M. Wang, C. Schick, R. Richert, J. Chem. Phys. 126, 104503 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    L.P. Singh, R. Richert, Phys. Rev. Lett. 109, 167802 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    L.P. Singh, C. Alba-Simionesco, R. Richert, J. Chem. Phys. 139, 144503 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    W.L. Jorgensen, J. Chem. Phys. 90, 1276 (1986)CrossRefGoogle Scholar
  53. 53.
    M.W. Sagal, J. Chem. Phys. 36, 2437 (1962)ADSCrossRefGoogle Scholar
  54. 54.
    J.K. Bhattacharjee, S.Z. Mirzaev, U. Kaatze, Int. J. Thermophys. 33, 469 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    J.K. Bhattacharjee, R.A. Ferrell, R.S. Basu, J.V. Sengers, Phys. Rev. A 24, 1469 (1981)ADSCrossRefGoogle Scholar
  56. 56.
    H.C. Burstyn, J.V. Sengers, J.K. Bhattacharjee, R.A. Ferrell, Phys. Rev. A 28, 1567 (1983)ADSCrossRefGoogle Scholar
  57. 57.
    R.F. Berg, M.R. Moldover, J. Chem. Phys. 89, 3694 (1988)ADSCrossRefGoogle Scholar
  58. 58.
    R.F. Berg, M.R. Moldover, Phys. Rev. Lett. 82, 920 (1999)ADSCrossRefGoogle Scholar
  59. 59.
    H. Hao, R.A. Ferrell, J.K. Bhattacharjee, Phys. Rev. E 71, 021201 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    L.P. Kadanoff, J. Swift, Phys. Rev. 166, 89 (1968)ADSCrossRefGoogle Scholar
  61. 61.
    B.I. Halperin, P.C. Hohenberg, Phys. Rev. 177, 952 (1977)ADSCrossRefGoogle Scholar
  62. 62.
    P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)ADSCrossRefGoogle Scholar
  63. 63.
    K. Kawasaki, Ann. Phys. (NY) 61, 1 (1970)ADSCrossRefGoogle Scholar
  64. 64.
    R.A. Ferrell, Phys. Rev. Lett. 24, 1169 (1970)ADSCrossRefGoogle Scholar
  65. 65.
    A.F. Kostko, M.A. Anisimov, J.V. Sengers, Phys. Rev. E 76, 021804 (2007)ADSCrossRefGoogle Scholar
  66. 66.
    S.Z. Mirzaev, U. Kaatze, J. Chem. Phys. 140, 044508 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Drittes Physikalisches InstitutGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.Fakultät für PhysikGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations