Skip to main content
Log in

Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U–Mo Alloy Plate-Type Fuel

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The uranium–molybdenum (U–Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium–molybdenum (U–Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium–molybdenum (DU–Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U–Mo alloys as a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. A monolithic fuel plate contains a solid piece of fuel material.

  2. Fuel meat is a combination of fuel materials with a non-fissionable heat conducting (matrix) material, confined inside a fuel plate.

References

  1. J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C.L. Trybus, T.C. Wiencek, Nucl. Eng. Des. 178, 119 (1997)

    Article  Google Scholar 

  2. NRC - U.S. Nuclear Regulatory Commission, Safety Evaluation Report Related to the Evaluation of Low-Enriched Uranium Silicide-Aluminum Dispersion Fuel for Use in Non-power Reactors, NUREG–1313 (U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, Washington, DC, 1988)

  3. G.A. Moore, M.C. Marshall, Co-Rolled U10Mo/Zirconium-Barrier-Layer Monolithic Fuel Foil Fabrication Process, INL/EXT-10-17774 (Idaho National Laboratory, Idaho Falls, ID, 2010)

  4. Y. Park, J. Yoo, K. Huang, D.D. Keiser Jr, J.F. Jue, B. Rabin, G. Moore, Y.H. Sohn, J. Nucl. Mater. 447, 25 (2014)

    Article  Google Scholar 

  5. K. Huang, Y. Park, D.D. Keiser Jr, Y.H. Sohn, J. Phase Equil. Diff. 33, 443 (2012)

    Article  Google Scholar 

  6. E. Perez, B. Yao, D.D. Keiser Jr, Y.H. Sohn, J. Nucl. Mater. 402, 8 (2010)

    Article  ADS  Google Scholar 

  7. B.H. Park, C.R. Clark, J.F. Jue, INL HIP Plate Fabrication, INL/EXT-10-17792 (Idaho National Laboratory, Idaho Falls, ID, 2010)

    Book  Google Scholar 

  8. Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry, ASTM E1269-11 (ASTM International, West Conshohocken, PA, 2011)

  9. T.L. Shaw, J.C. Carrol, Int. J. Thermophys. 19, 1671 (1998)

    Article  ADS  Google Scholar 

  10. M. Sheindlin, D. Halton, M. Musella, C. Ronchi, Rev. Sci. Instrum. 69, 1426 (1998)

    Article  ADS  Google Scholar 

  11. Standard Test Method for Thermal Diffusivity by the Flash Method, ASTM E1461-11 (ASTM International, West Conshohocken, PA, 2011)

  12. J.A. Cape, G.W. Lehman, J. Appl. Phys. 34, 1909 (1963)

    Article  ADS  Google Scholar 

  13. H.J. Lee, Thermal Diffusivity in Layered and Dispersed Composites, Ph.D. Thesis, Purdue University, West Lafayette, IN, 1975

  14. D.J. Edwards, R.M. Ermi, A.L. Schemer-Kohrn, N.R. Overman, C.H. Henager Jr, D.E. Burkes, D.J. Senor, Characterization of U–Mo Foils for AFIP-7, PNNL-21990 (Pacific Northwest National Laboratory, Richland, WA, 2012)

  15. C.A.W. Peterson, W.J. Steele, S.L. DiGiallonardo, Isothermal Transformation Study on Some Uranium-Base Alloys, UCRL-7824 (University of California Radiation Laboratory, Berkeley, 1964)

  16. ASM, ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2 (ASM International, Materials Park, OH, 1990)

  17. D.E. Burkes, G.S. Mickum, D.M. Wachs, Thermophysical Properties of U-10Mo Alloy, INL/EXT-10-19373 (Idaho National Laboratory, Idaho Falls, 2010)

  18. K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Woodhead Publishing Limited, Cambridge, 2002)

    Book  Google Scholar 

  19. J.K. Fink, L. Leibowitz, J. Nucl. Mater. 226, 44 (1995)

    Article  ADS  Google Scholar 

  20. S.C. Parida, S. Dash, Z. Singh, R. Prasad, V. Venugopal, J. Phys. Chem. Solids 62, 585 (2001)

    Article  ADS  Google Scholar 

  21. R.M. Hengstler, L. Beck, H. Breitkreutz, C. Jarousse, R. Jungwirth, W. Petry, W. Schmid, J. Schneider, N. Wieschalla, J. Nucl. Mater. 402, 74 (2010)

    Article  ADS  Google Scholar 

  22. T. Matsui, T. Natsume, K. Naito, J. Nucl. Mater. 167, 152 (1989)

    Article  ADS  Google Scholar 

  23. M. Farkas, E. Eldridge, J. Nucl. Mater. 27, 94 (1968)

    Article  ADS  Google Scholar 

  24. D.E. Burkes, C.A. Papesch, A.P. Maddison, T. Hartmann, F.J. Rice, J. Nucl. Mater. 403, 160 (2010)

    Article  ADS  Google Scholar 

  25. T.R.G. Kutty, S. Dash, J. Banerjee, S. Kaity, A. Kumar, C.B. Basak, J. Nucl. Mater. 420, 193 (2012)

    Article  ADS  Google Scholar 

  26. Department of Defense Handbook, Metallic Materials and Elements for Aerospace Vehicle Structures, MIL-HDBK-5H (Defense Area Printing Service, Philadelphia, 1998)

  27. J.L. Klein, in Nuclear Reactor Fuel Elements: Metallurgy and Fabrication, ed. by A.R. Kaufmann (Wiley, New York, 1962)

  28. J.M. Fackelmann, A.A. Bauer, D.P. Moak, Literature Survey on Dilute Uranium Alloys for Sandia Booster Concept to Sandia Corporation, BMI-X-10264 (Battelle Memorial Institute, Columbus, 1969)

  29. G. Beghi, Gamma Phase Uranium–Molybdenum Fuel Alloys, EUR 4053 e (Joint Nuclear Research Center, Italy, 1968)

  30. Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens, Thermophysical Properties of Matter, Thermal Conductivity—Metallic Elements and Alloys, vol. 1 (IFI/Plenum, New York, 1970)

  31. H.A. Saller, R.F. Dickerson, A.A. Bauer, N.E. Daniel, Properties of a Fissium-type Alloy, BMI-1123 (Battelle Memorial Institute, Columbus, 1956)

  32. A. Del Grosso, Compilation of Uranium-10 w/o Molybdenum Fuel Alloy Properties—Technical Memorandum No. 3, AECU-3679 (Atomic Power Development Associates Inc, Detroit, 1957)

Download references

Acknowledgments

The authors wish to acknowledge Mr. Jason Schulthess, Mr. Adam Robinson, Mr. Glenn Moore, Mr. Brady Mackowiak, Mr. Blair Park, Dr. Barry Rabin, and Mrs. Susan Case from Idaho National Laboratory for the fabrication of the surrogate plates and delivery of the surrogate mini-plates. Installation of equipment into hot cells and the operations conducted in hot cells are a large undertaking. The authors wish to acknowledge those at Pacific Northwest National Laboratory who were involved in the preparation of samples and performance of measurements, specifically Ms. Nicole Green, Mr. Jake Bohlke, Mr. Jamin Trevino, Mr. Dustin Blundon, Ms. Brittany Carman, Mr. Jason Cartwright, Mr. Jeffrey Chenault, Mr. Steve Halstead, Mr. Eric Hanson, Mr. Kevin Heaton, Mr. Robert Orton, Mr. Stan Owsley, Mr. Ben Palma, Mr. Mario Pereira, Mr. Bruce Slonecker, Mr. Timothy Smith, Mr. Randy Thornhill, and Mr. Patrick Valdez. Finally, the authors wish to acknowledge the sponsor, the Global Threat Reduction Initiative, for the opportunity to conduct this work under Contract DE–AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Burkes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkes, D.E., Casella, A.M., Buck, E.C. et al. Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U–Mo Alloy Plate-Type Fuel. Int J Thermophys 35, 1476–1500 (2014). https://doi.org/10.1007/s10765-014-1683-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1683-4

Keywords

Navigation