International Journal of Thermophysics

, Volume 35, Issue 8, pp 1476–1500 | Cite as

Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U–Mo Alloy Plate-Type Fuel

  • Douglas E. Burkes
  • Andrew M. Casella
  • Edgar C. Buck
  • Amanda J. Casella
  • Matthew K. Edwards
  • Paul J. MacFarlan
  • Karl N. Pool
  • Frances N. Smith
  • Franciska H. Steen


The uranium–molybdenum (U–Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium–molybdenum (U–Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium–molybdenum (DU–Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U–Mo alloys as a function of temperature.


Multilayer Nuclear fuel Thermal conductivity  Uranium–molybdenum 



The authors wish to acknowledge Mr. Jason Schulthess, Mr. Adam Robinson, Mr. Glenn Moore, Mr. Brady Mackowiak, Mr. Blair Park, Dr. Barry Rabin, and Mrs. Susan Case from Idaho National Laboratory for the fabrication of the surrogate plates and delivery of the surrogate mini-plates. Installation of equipment into hot cells and the operations conducted in hot cells are a large undertaking. The authors wish to acknowledge those at Pacific Northwest National Laboratory who were involved in the preparation of samples and performance of measurements, specifically Ms. Nicole Green, Mr. Jake Bohlke, Mr. Jamin Trevino, Mr. Dustin Blundon, Ms. Brittany Carman, Mr. Jason Cartwright, Mr. Jeffrey Chenault, Mr. Steve Halstead, Mr. Eric Hanson, Mr. Kevin Heaton, Mr. Robert Orton, Mr. Stan Owsley, Mr. Ben Palma, Mr. Mario Pereira, Mr. Bruce Slonecker, Mr. Timothy Smith, Mr. Randy Thornhill, and Mr. Patrick Valdez. Finally, the authors wish to acknowledge the sponsor, the Global Threat Reduction Initiative, for the opportunity to conduct this work under Contract DE–AC05-76RL01830.


  1. 1.
    J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C.L. Trybus, T.C. Wiencek, Nucl. Eng. Des. 178, 119 (1997)CrossRefGoogle Scholar
  2. 2.
    NRC - U.S. Nuclear Regulatory Commission, Safety Evaluation Report Related to the Evaluation of Low-Enriched Uranium Silicide-Aluminum Dispersion Fuel for Use in Non-power Reactors, NUREG–1313 (U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, Washington, DC, 1988)Google Scholar
  3. 3.
    G.A. Moore, M.C. Marshall, Co-Rolled U10Mo/Zirconium-Barrier-Layer Monolithic Fuel Foil Fabrication Process, INL/EXT-10-17774 (Idaho National Laboratory, Idaho Falls, ID, 2010)Google Scholar
  4. 4.
    Y. Park, J. Yoo, K. Huang, D.D. Keiser Jr, J.F. Jue, B. Rabin, G. Moore, Y.H. Sohn, J. Nucl. Mater. 447, 25 (2014)CrossRefGoogle Scholar
  5. 5.
    K. Huang, Y. Park, D.D. Keiser Jr, Y.H. Sohn, J. Phase Equil. Diff. 33, 443 (2012)CrossRefGoogle Scholar
  6. 6.
    E. Perez, B. Yao, D.D. Keiser Jr, Y.H. Sohn, J. Nucl. Mater. 402, 8 (2010)CrossRefADSGoogle Scholar
  7. 7.
    B.H. Park, C.R. Clark, J.F. Jue, INL HIP Plate Fabrication, INL/EXT-10-17792 (Idaho National Laboratory, Idaho Falls, ID, 2010)CrossRefGoogle Scholar
  8. 8.
    Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry, ASTM E1269-11 (ASTM International, West Conshohocken, PA, 2011)Google Scholar
  9. 9.
    T.L. Shaw, J.C. Carrol, Int. J. Thermophys. 19, 1671 (1998)CrossRefADSGoogle Scholar
  10. 10.
    M. Sheindlin, D. Halton, M. Musella, C. Ronchi, Rev. Sci. Instrum. 69, 1426 (1998)CrossRefADSGoogle Scholar
  11. 11.
    Standard Test Method for Thermal Diffusivity by the Flash Method, ASTM E1461-11 (ASTM International, West Conshohocken, PA, 2011)Google Scholar
  12. 12.
    J.A. Cape, G.W. Lehman, J. Appl. Phys. 34, 1909 (1963)CrossRefADSGoogle Scholar
  13. 13.
    H.J. Lee, Thermal Diffusivity in Layered and Dispersed Composites, Ph.D. Thesis, Purdue University, West Lafayette, IN, 1975Google Scholar
  14. 14.
    D.J. Edwards, R.M. Ermi, A.L. Schemer-Kohrn, N.R. Overman, C.H. Henager Jr, D.E. Burkes, D.J. Senor, Characterization of U–Mo Foils for AFIP-7, PNNL-21990 (Pacific Northwest National Laboratory, Richland, WA, 2012)Google Scholar
  15. 15.
    C.A.W. Peterson, W.J. Steele, S.L. DiGiallonardo, Isothermal Transformation Study on Some Uranium-Base Alloys, UCRL-7824 (University of California Radiation Laboratory, Berkeley, 1964)Google Scholar
  16. 16.
    ASM, ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2 (ASM International, Materials Park, OH, 1990)Google Scholar
  17. 17.
    D.E. Burkes, G.S. Mickum, D.M. Wachs, Thermophysical Properties of U-10Mo Alloy, INL/EXT-10-19373 (Idaho National Laboratory, Idaho Falls, 2010)Google Scholar
  18. 18.
    K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Woodhead Publishing Limited, Cambridge, 2002)CrossRefGoogle Scholar
  19. 19.
    J.K. Fink, L. Leibowitz, J. Nucl. Mater. 226, 44 (1995)CrossRefADSGoogle Scholar
  20. 20.
    S.C. Parida, S. Dash, Z. Singh, R. Prasad, V. Venugopal, J. Phys. Chem. Solids 62, 585 (2001)CrossRefADSGoogle Scholar
  21. 21.
    R.M. Hengstler, L. Beck, H. Breitkreutz, C. Jarousse, R. Jungwirth, W. Petry, W. Schmid, J. Schneider, N. Wieschalla, J. Nucl. Mater. 402, 74 (2010)CrossRefADSGoogle Scholar
  22. 22.
    T. Matsui, T. Natsume, K. Naito, J. Nucl. Mater. 167, 152 (1989)CrossRefADSGoogle Scholar
  23. 23.
    M. Farkas, E. Eldridge, J. Nucl. Mater. 27, 94 (1968)CrossRefADSGoogle Scholar
  24. 24.
    D.E. Burkes, C.A. Papesch, A.P. Maddison, T. Hartmann, F.J. Rice, J. Nucl. Mater. 403, 160 (2010)CrossRefADSGoogle Scholar
  25. 25.
    T.R.G. Kutty, S. Dash, J. Banerjee, S. Kaity, A. Kumar, C.B. Basak, J. Nucl. Mater. 420, 193 (2012)CrossRefADSGoogle Scholar
  26. 26.
    Department of Defense Handbook, Metallic Materials and Elements for Aerospace Vehicle Structures, MIL-HDBK-5H (Defense Area Printing Service, Philadelphia, 1998)Google Scholar
  27. 27.
    J.L. Klein, in Nuclear Reactor Fuel Elements: Metallurgy and Fabrication, ed. by A.R. Kaufmann (Wiley, New York, 1962)Google Scholar
  28. 28.
    J.M. Fackelmann, A.A. Bauer, D.P. Moak, Literature Survey on Dilute Uranium Alloys for Sandia Booster Concept to Sandia Corporation, BMI-X-10264 (Battelle Memorial Institute, Columbus, 1969)Google Scholar
  29. 29.
    G. Beghi, Gamma Phase Uranium–Molybdenum Fuel Alloys, EUR 4053 e (Joint Nuclear Research Center, Italy, 1968)Google Scholar
  30. 30.
    Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens, Thermophysical Properties of Matter, Thermal Conductivity—Metallic Elements and Alloys, vol. 1 (IFI/Plenum, New York, 1970)Google Scholar
  31. 31.
    H.A. Saller, R.F. Dickerson, A.A. Bauer, N.E. Daniel, Properties of a Fissium-type Alloy, BMI-1123 (Battelle Memorial Institute, Columbus, 1956)Google Scholar
  32. 32.
    A. Del Grosso, Compilation of Uranium-10 w/o Molybdenum Fuel Alloy Properties—Technical Memorandum No. 3, AECU-3679 (Atomic Power Development Associates Inc, Detroit, 1957)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Douglas E. Burkes
    • 1
  • Andrew M. Casella
    • 1
  • Edgar C. Buck
    • 2
  • Amanda J. Casella
    • 2
  • Matthew K. Edwards
    • 2
  • Paul J. MacFarlan
    • 2
  • Karl N. Pool
    • 2
  • Frances N. Smith
    • 2
  • Franciska H. Steen
    • 3
  1. 1.Nuclear Systems Design, Engineering & Analysis GroupPacific Northwest National LaboratoryRichlandUSA
  2. 2.Nuclear Chemistry & Engineering GroupPacific Northwest National LaboratoryRichlandUSA
  3. 3.Shielded Facilities OperationsPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations