Advertisement

International Journal of Thermophysics

, Volume 35, Issue 9–10, pp 1749–1756 | Cite as

Fusion Diagrams in the \(\mathrm{BiBO}_{3}\)\(\mathrm{YbBO}_{3}\) and \(\mathrm{Bi}_{4}\mathrm{B}_{2}\mathrm{O}_{9}\)\(\mathrm{YbBO}_{3}\) Systems

  • M. M. Asadov
  • N. A. Akhmedova
Article

Abstract

A calculation model of the Gibbs energy of ternary oxide compounds from the binary components was used. Thermodynamic properties of \(\mathrm{Yb}_{2} \mathrm{O}_{3}\)\(\mathrm{Bi}_{2}\mathrm{O}_{3}\)\(\mathrm{B}_{2}\mathrm{O}_{3}\) ternary systems in the condensed state were calculated. Thermodynamic data of binary and ternary compounds were used to determine the stable sections. The probability of reactions between the corresponding components in the \(\mathrm{Yb}_{2} \mathrm{O}_{3}\)\(\mathrm{Bi}_{2} \mathrm{O}_{3}\)\(\mathrm{B}_{2} \mathrm{O}_{3}\) system was estimated. Fusibility diagrams of systems \(\mathrm{BiBO}_{3}\)\(\mathrm{YbBO}_{3}\) and \(\mathrm{Bi}_{4} \mathrm{B}_{2} \mathrm{O}_{9}\)\(\mathrm{YbBO}_{3}\) were studied by physical–chemical analysis. The isothermal section of the phase diagram of \(\mathrm{Yb}_{2} \mathrm{O}_{3}\)\(\mathrm{Bi}_{2} \mathrm{O}_{3}\)\(\mathrm{B}_{2} \mathrm{O}_{3}\) at 298 K is built, as well as the projection of the liquid surface of \(\mathrm{BiBO}_{3}\)\(\mathrm{B}_{2} \mathrm{O}_{3}\)\(\mathrm{YbBO}_{3}\).

Keywords

BiBO\(_{3}\)–YbBO\(_{3}\) Bi\(_{4}\)B\(_{2}\)O\(_{9}\)–YbBO\(_{3}\) High temperatures Melting 

References

  1. 1.
    A.V. Egorysheva, Yu.F. Kargin, Neorg. Mater. 34, 859 (1998) [in Russian]Google Scholar
  2. 2.
    A.V. Egorysheva, V.M. Skorikov, V.D. Volodin, O.E. Mislitskiy, Yu.F. Kargin, Zh. Neorg. Khim 51, 2078 (2006) [in Russian]Google Scholar
  3. 3.
    A.V. Egorysheva, V.D. Volodin, V.M. Skorikov, Neorg. Mater. 44, 76 (2008) [in Russian]Google Scholar
  4. 4.
    Yu.F. Kargin, S.N. Ivicheva, M.G. Komova, V.A. Krutko, Zh. Neorg. Khim 53, 478 (2008) [in Russian]Google Scholar
  5. 5.
    Yu.F. Kargin, S.N. Ivicheva, L.I. Shvorneva, Zh. Neorg. Khim 53, 1391 (2008) [in Russian]Google Scholar
  6. 6.
    A.V. Egorysheva, V.D. Volodin, V.M. Skorikov, Neorg. Mater. 44, 1397 (2008) [in Russian]Google Scholar
  7. 7.
    Yu.F. Kargin, S.N. Ivicheva, L.I. Shvorneva, M.G. Komova, V.A. Krutko, Zh. Neorg. Khim. 53, 1614 (2008) [in Russian]Google Scholar
  8. 8.
    A.V. Egorysheva, V.D. Volodin, V.M. Skorikov, G.Y. Yurkov, Neorg. Mater. 46, 495 (2010) [in Russian]Google Scholar
  9. 9.
    E.M. Levin, C.L. McDaniel, J. Am. Ceram. Soc. 45, 355 (1962)CrossRefGoogle Scholar
  10. 10.
    M.I. Zargarova, N.A. Akhmedova, E.S. Guluzade, Zh. Neorg. Khim. 40, 1389 (1995)Google Scholar
  11. 11.
    The Landolt-Bornstein Database. Numerical Data and Functional Relationships in Science and Technology. Group III. Crystal Structure Data of Inorganic Compounds, vol. 7 (Springer, Berlin, 1987), p. 121Google Scholar
  12. 12.
    M. Drache, P. Roussel, J.P. Wignacourt, P. Conflant, Mater. Res. Bull. 39, 1393 (2004)CrossRefGoogle Scholar
  13. 13.
    G. Yao, X. Wang, Y. Yang, L. Li, J. Am. Ceram. Soc. 93, 1697 (2010)CrossRefGoogle Scholar
  14. 14.
    L.N. Dmitruk, O.B. Petrova, A.V. Popov, V.E. Shukshin, Trudy IOFRAN im. A.M.Prohorov 64, 49 (2008) [in Russian]Google Scholar
  15. 15.
    Termicheskie konstanty veschestv. Spravochnik / Pod red. V.P. Glushko (Moskva, VINITI AN SSSR 8, 535, 1978) [in Russian]; Thermal Constants of Substances. Handbook, ed. by V.P. Glushko (VINITI AS USSR, Moscow, 1978)Google Scholar
  16. 16.
    O. Kubaschewski, C.B. Alcook, Metallurgical Thermochemistry (Pergamon Press, Oxford, 1979)Google Scholar
  17. 17.
    V.T. Maltsev, S.A. Kutolin, Zh. Neorg. Khim. 24, 12 (1979) [in Russian]Google Scholar
  18. 18.
    P. Becker, Cryst. Res. Technol. 38, 74 (2003)CrossRefGoogle Scholar
  19. 19.
    R. Ihara, T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, Opt. Mater. 27, 403 (2004)CrossRefADSGoogle Scholar
  20. 20.
    A.V. Egorysheva, V.I. Burkov, Yu.F. Kargin, V.G. Plotnichenko, V.V. Koltashev, Kristallografiya 50, 135 (2005) [in Russian]Google Scholar
  21. 21.
    A. Bajaj, A. Khanna, J. Phys. Condens. Matter. 21, 035112 (2009)CrossRefADSGoogle Scholar
  22. 22.
    P. Becker, R. Frohlich, Z. Naturforsch. B 59, 256 (2004)Google Scholar
  23. 23.
    Yu.F. Kargin, V.P. Zhereb, A.V. Egorysheva, Zh. Neorg. Khim. 47, 992 (2002) [in Russian]Google Scholar
  24. 24.
    H. Huppertz, J. Chem. Sci. 56b, 697 (2001)Google Scholar
  25. 25.
    Diagrammi sostoyaniya system tugoplavkih oksidov. Spravochnik, Vip. 5, Dvoynie sistemi (Inst. Khimii silikatov, Nauka, Leningrad, 1985), p. 284 s [in Russian]; The Phase Diagrams of Systems of Refractory Oxides Handbook, vol. 5 (Institute of Silicate Chemistry, Science, Leningrad, 1985)Google Scholar
  26. 26.
    W.F. Bradley, D.L. Graf, R.S. Roth, Acta Cryst. 20, 283 (1966)CrossRefGoogle Scholar
  27. 27.
    E.M. Levin, Phase Diagrams, vol. 3 (Academic Press, New York, 1970), p. 180Google Scholar
  28. 28.
    E.M. Levin, R.S. Roth, J.B. Martin, Am. Miner. 46, 1029 (1961)Google Scholar
  29. 29.
    M. Muehlberg, M. Burianek, H. Edongue, C. Poetsch, J. Cryst. Growth 237, 740 (2002)CrossRefADSGoogle Scholar
  30. 30.
    M.M. Asadov, N.A. Akhmedova, Azerb. Khim. Zhurn. 3, 118 (2002) [in Azerbaijani]Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Chemical ProblemsNational Academy of Sciences of AzerbaijanBakuAzerbaijan

Personalised recommendations