International Journal of Thermophysics

, Volume 36, Issue 4, pp 701–708 | Cite as

Thermal Evaporation Loss Measurements on Quasicrystal (Ti–Zr–Ni) and Glass Forming (Vit 106 and Vit 106a) Liquids

  • M. E. Blodgett
  • A. K. Gangopadhyay
  • K. F. Kelton


Thermal evaporation loss measurements made using the electrostatic levitation (ESL) technique for one binary Ti–Zr, two ternary Ti–Zr–Ni, and two glass-forming (Vit 106 and Vit 106a) alloy liquids are reported. The containerless environment enables measurements not only for the equilibrium liquids but also for the metastable supercooled liquids. The data follow the Langmuir equation when the activity coefficient of the solute atoms, a measure for the deviation from the ideal solution behavior, is taken into account. An estimate for the activity coefficient of Ni in the Ti–Zr liquid is made from these data, demonstrating the effectiveness of ESL for such measurements.


Alloy liquids Cohesive energy Evaporation Langmuir equation 



This research was partially supported by NASA under Grants NNX07AK27G and NNX10AU19G.


  1. 1.
    I. Langmuir, Phys. Rev. 2, 329 (1913)CrossRefADSGoogle Scholar
  2. 2.
    R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Metals Park, OH, 1973)Google Scholar
  3. 3.
    W.-K. Rhim, M. Collender, M.T. Hyson, W.T. Simms, D.D. Elleman, Rev. Sci. Instrum. 56, 307 (1985)CrossRefADSGoogle Scholar
  4. 4.
    D.M. Herlach, R.F. Cochrane, I. Egry, H.J. Fecht, A.L. Greer, Int. Mater. Rev. 38, 273 (1993)CrossRefGoogle Scholar
  5. 5.
    G.W. Lee, T.K. Croat, A.K. Gangopadhyay, K.F. Kelton, Philos. Mag. Lett. 82, 199 (2002)CrossRefADSGoogle Scholar
  6. 6.
    G.W. Lee, A.K. Gangopadhyay, T.K. Croat, T.J. Rathz, R.W. Hyers, J.R. Rogers, K.F. Kelton, Phys. Rev. B 72, 174107 (2005)CrossRefADSGoogle Scholar
  7. 7.
    G.W. Lee, A.K. Gangopadhyay, K.F. Kelton, Acta Mater. 59, 4964 (2011)CrossRefGoogle Scholar
  8. 8.
    F.R. de Boer, R. Boom, W.C.M. Matterns, A.R. Miedema, A.K. Niessen, Cohesion in Metals: Transition Metal Alloys (North-Holland, Amsterdam, 1988)Google Scholar
  9. 9.
    J.C. Bendert, Thesis, Washington University in St. Louis (2013)Google Scholar
  10. 10.
    D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 92nd edn. (CRC Press, Boca Raton, FL, 2012)Google Scholar
  11. 11.
    Y. Ogasawara, T.S. Hadi, M. Maeda, Iron Steel Inst. Jpn. Int. 38, 789 (1998)CrossRefGoogle Scholar
  12. 12.
    A.I. Zaitsev, N.E. Zaitseva, EKh Shakhpazova, A.A. Kodentsov, Phys. Chem. Chem. Phys. 4, 6047 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. E. Blodgett
    • 1
  • A. K. Gangopadhyay
    • 1
  • K. F. Kelton
    • 1
  1. 1.Department of PhysicsWashington University in St. LouisSt. LouisUSA

Personalised recommendations